Sandro Vivona
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandro Vivona.
Nature | 2015
Jiajie Diao; Rong Liu; Yueguang Rong; Minglei Zhao; Jing Zhang; Ying Lai; Qiangjun Zhou; Livia Wilz; Jianxu Li; Sandro Vivona; Richard A. Pfuetzner; Axel T. Brunger; Qing Zhong
Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17–SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17–SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome–endolysosome fusion.
eLife | 2013
Jiajie Diao; Jacqueline Burré; Sandro Vivona; Daniel J. Cipriano; Manu Sharma; Minjoung Kyoung; Thomas C. Südhof; Axel T. Brunger
α-Synuclein is a presynaptic protein that is implicated in Parkinsons and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinsons disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca2+-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a ‘buffer’ of synaptic vesicles, without affecting neurotransmitter release itself. DOI: http://dx.doi.org/10.7554/eLife.00592.001
Nature | 2013
Jacqueline Burré; Sandro Vivona; Jiajie Diao; Manu Sharma; Axel T. Brunger; Thomas C. Südhof
Arising from T. Bartels, J. G. Choi & D. J. Selkoe. 477, 107–110 (2011).10.1038/nature10324α-Synuclein is an abundant presynaptic protein that binds to negatively charged phospholipids, functions as a SNARE-complex chaperone and contributes to Parkinson’s disease pathogenesis. Recombinant α-synuclein in solution is largely unfolded and devoid of tertiary structure, but Bartels et al. have proposed that native α-synuclein purified from human erythrocytes forms a stably folded, soluble tetramer that resists aggregation. By contrast, we show here that native α-synuclein purified from mouse brain consists of a largely unstructured monomer, exhibits no stable tetramer formation, and is prone to aggregation. The native state of α-synuclein is important for understanding its pathological effects as a stably folded protein would be much less prone to aggregation than a conformationally labile protein. There is a Reply to this Brief Communication Arising by Bartels, T. & Selkoe, D. J. Nature 498, http://dx.doi.org/10.1038/nature12126 (2013).
Nature | 2015
Minglei Zhao; Shenping Wu; Qiangjun Zhou; Sandro Vivona; Daniel J. Cipriano; Yifan Cheng; Axel T. Brunger
Evolutionarily conserved SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) proteins form a complex that drives membrane fusion in eukaryotes. The ATPase NSF (N-ethylmaleimide sensitive factor), together with SNAPs (soluble NSF attachment protein), disassembles the SNARE complex into its protein components, making individual SNAREs available for subsequent rounds of fusion. Here we report structures of ATP- and ADP-bound NSF, and the NSF/SNAP/SNARE (20S) supercomplex determined by single-particle electron cryomicroscopy at near-atomic to sub-nanometre resolution without imposing symmetry. Large, potentially force-generating, conformational differences exist between ATP- and ADP-bound NSF. The 20S supercomplex exhibits broken symmetry, transitioning from six-fold symmetry of the NSF ATPase domains to pseudo four-fold symmetry of the SNARE complex. SNAPs interact with the SNARE complex with an opposite structural twist, suggesting an unwinding mechanism. The interfaces between NSF, SNAPs, and SNAREs exhibit characteristic electrostatic patterns, suggesting how one NSF/SNAP species can act on many different SNARE complexes.
Journal of Biological Chemistry | 2013
Daniel J. Cipriano; Jaemyeong Jung; Sandro Vivona; Timothy D. Fenn; Axel T. Brunger; Zev Bryant
Background: NSF is an AAA+ protein that recycles the post-fusion SNARE complex during the membrane fusion cycle. Results: NSF disassembles the SNARE complex processively in vitro and consumes dozens of ATP molecules per SNARE. Conclusion: NSF is a processive motor that progressively unwinds the SNARE complex. Significance: The physical mechanism of this poorly understood machine is illuminated using new assays and new measurements of ATP coupling ratios and processivity. SNARE proteins promote membrane fusion by forming a four-stranded parallel helical bundle that brings the membranes into close proximity. Post-fusion, the complex is disassembled by an AAA+ ATPase called N-ethylmaleimide-sensitive factor (NSF). We present evidence that NSF uses a processive unwinding mechanism to disassemble SNARE proteins. Using a real-time disassembly assay based on fluorescence dequenching, we correlate NSF-driven disassembly rates with the SNARE-activated ATPase activity of NSF. Neuronal SNAREs activate the ATPase rate of NSF by ∼26-fold. One SNARE complex takes an average of ∼5 s to disassemble in a process that consumes ∼50 ATP. Investigations of substrate requirements show that NSF is capable of disassembling a truncated SNARE substrate consisting of only the core SNARE domain, but not an unrelated four-stranded coiled-coil. NSF can also disassemble an engineered double-length SNARE complex, suggesting a processive unwinding mechanism. We further investigated processivity using single-turnover experiments, which show that SNAREs can be unwound in a single encounter with NSF. We propose a processive helicase-like mechanism for NSF in which ∼1 residue is unwound for every hydrolyzed ATP molecule.
Journal of Biological Chemistry | 2013
Sandro Vivona; Daniel J. Cipriano; Seán E. O'Leary; Ye Henry Li; Timothy D. Fenn; Axel T. Brunger
Background: NSF and α-SNAP disassemble all SNARE complexes. Results: The disassembly kinetics is conserved for different ternary and binary SNARE complexes. α-SNAP and the ternary SNARE complex form a 1:1 complex. Conclusion: NSF uses a conserved mechanism to disassemble all SNARE complexes, starting from a 1:1 SNAP-SNARE complex interaction. Significance: We illuminate a broad mechanism allowing NSF to support SNARE-mediated exocytosis. Vesicle trafficking in eukaryotic cells is facilitated by SNARE-mediated membrane fusion. The ATPase NSF (N-ethylmaleimide-sensitive factor) and the adaptor protein α-SNAP (soluble NSF attachment protein) disassemble all SNARE complexes formed throughout different pathways, but the effect of SNARE sequence and domain variation on the poorly understood disassembly mechanism is unknown. By measuring SNARE-stimulated ATP hydrolysis rates, Michaelis-Menten constants for disassembly, and SNAP-SNARE binding constants for four different ternary SNARE complexes and one binary complex, we found a conserved mechanism, not influenced by N-terminal SNARE domains. α-SNAP and the ternary SNARE complex form a 1:1 complex as revealed by multiangle light scattering. We propose a model of NSF-mediated disassembly in which the reaction is initiated by a 1:1 interaction between α-SNAP and the ternary SNARE complex, followed by NSF binding. Subsequent additional α-SNAP binding events may occur as part of a processive disassembly mechanism.
Journal of Biological Chemistry | 2010
Sandro Vivona; Corey W. Liu; Pavel Strop; Valeria Rossi; Francesco Filippini; Axel T. Brunger
SNARE protein complexes are key mediators of exocytosis by juxtaposing opposing membranes, leading to membrane fusion. SNAREs generally consist of one or two core domains that can form a four-helix bundle with other SNARE core domains. Some SNAREs, such as syntaxin target-SNAREs and longin vesicular-SNAREs, have independent, folded N-terminal domains that can interact with their respective SNARE core domains and thereby affect the kinetics of SNARE complex formation. This autoinhibition mechanism is believed to regulate the role of the longin VAMP7/TI-VAMP in neuronal morphogenesis. Here we use nuclear magnetic resonance spectroscopy to study the longin-SNARE core domain interaction for VAMP7. Using complete backbone resonance assignments, chemical shift perturbations analysis, and hydrogen/deuterium exchange experiments, we conclusively show that VAMP7 adopts a preferentially closed conformation in solution. Taken together, the closed conformation of longins is conserved, in contrast to the syntaxin family of SNAREs for which mixtures of open and closed states have been observed. This may indicate different regulatory mechanisms for SNARE complexes containing syntaxins and longins, respectively.
Structure | 2015
Susanne Ressl; Brandon K. Vu; Sandro Vivona; David C. Martinelli; Thomas C. Südhof; Axel T. Brunger
C1q-like (C1QL) -1, -2, and -3 proteins are encoded by homologous genes that are highly expressed in brain. C1QLs bind to brain-specific angiogenesis inhibitor 3 (BAI3), an adhesion-type G-protein coupled receptor that may regulate dendritic morphology by organizing actin filaments. To begin to understand the function of C1QLs, we determined high-resolution crystal structures of the globular C1q-domains of C1QL1, C1QL2, and C1QL3. Each structure is a trimer, with each protomer forming a jelly-roll fold consisting of 10 β strands. Moreover, C1QL trimers may assemble into higher-order oligomers similar to adiponectin and contain four Ca(2+)-binding sites along the trimeric symmetry axis, as well as additional surface Ca(2+)-binding sites. Mutation of Ca(2+)-coordinating residues along the trimeric symmetry axis lowered the Ca(2+)-binding affinity and protein stability. Our results reveal unique structural features of C1QLs among C1q/TNF superfamily proteins that may be associated with their specific brain functions.
Vaccine | 2011
Brett N. Bowman; Paul R. McAdam; Sandro Vivona; Jin X. Zhang; Tiffany Luong; Richard K. Belew; Harpal Sahota; Donald G. Guiney; Faramarz Valafar; Joshua Fierer; Christopher H. Woelk
Reverse vaccinology aims to accelerate subunit vaccine design by rapidly predicting which proteins in a pathogenic bacterial proteome are putative protective antigens. Support vector machine classification is a machine learning approach that has been applied to solve numerous classification problems in biological sciences but has not previously been incorporated into a reverse vaccinology approach. A training data set of 136 bacterial protective antigens paired with 136 non-antigens was constructed and bioinformatic tools were used to annotate this data for predicted protein features, many of which are associated with antigenicity (i.e. extracellular localization, signal peptides and B-cell epitopes). Annotation was used to train support vector machine classifiers that exhibited a maximum accuracy of 92% for discriminating protective antigens from non-antigens as assessed by a leave-tenth-out cross-validation approach. These accuracies were superior to those achieved when annotating training data with auto and cross covariance transformations of z-descriptors for hydrophobicity, molecular size and polarity, or when classification was performed using regression methods. To further validate support vector machine classifiers, they were used to rank all the proteins in six bacterial proteomes for their antigenicity. Protective antigens from the training data were significantly recalled (enriched) in the top 75 ranked proteins for all six proteomes as assessed by a Fishers exact test (p<0.05). This paper describes a superior workflow for performing reverse vaccinology studies and provides a benchmark training data set that can be used to evaluate future methodological improvements.
Journal of Biological Chemistry | 2015
Yunxiang Zhang; Jiajie Diao; Karen N. Colbert; Ying Lai; Richard A. Pfuetzner; Mark S. Padolina; Sandro Vivona; Susanne Ressl; Daniel J. Cipriano; Ucheor B. Choi; Niket Shah; William I. Weis; Axel T. Brunger
Background: Munc18-1 is an important factor for synaptic transmitter release, but its molecular mechanism remains an enigma. Results: Munc18a does not affect fusion kinetics. It can sequester syntaxin-1A molecules from the syntaxin-1A·SNAP-25 t-SNARE complex. Conclusion: Munc18a has no effect on complete fusion in conjunction with synaptotagmin-1, complexin-1, and neuronal SNAREs. Significance: This work provides new insights into Munc18-1 and its interactions with other synaptic proteins. Sec1/Munc18 (SM) proteins are essential for membrane trafficking, but their molecular mechanism remains unclear. Using a single vesicle-vesicle content-mixing assay with reconstituted neuronal SNAREs, synaptotagmin-1, and complexin-1, we show that the neuronal SM protein Munc18a/nSec1 has no effect on the intrinsic kinetics of both spontaneous fusion and Ca2+-triggered fusion between vesicles that mimic synaptic vesicles and the plasma membrane. However, wild type Munc18a reduced vesicle association ∼50% when the vesicles bearing the t-SNAREs syntaxin-1A and SNAP-25 were preincubated with Munc18 for 30 min. Single molecule experiments with labeled SNAP-25 indicate that the reduction of vesicle association is a consequence of sequestration of syntaxin-1A by Munc18a and subsequent release of SNAP-25 (i.e. Munc18a captures syntaxin-1A via its high affinity interaction). Moreover, a phosphorylation mimic mutant of Munc18a with reduced affinity to syntaxin-1A results in less reduction of vesicle association. In summary, Munc18a does not directly affect fusion, although it has an effect on the t-SNARE complex, depending on the presence of other factors and experimental conditions. Our results suggest that Munc18a primarily acts at the prefusion stage.