Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandy Leung-Kuen Au is active.

Publication


Featured researches published by Sandy Leung-Kuen Au.


Hepatology | 2012

Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis

Sandy Leung-Kuen Au; Carmen Chak-Lui Wong; Joyce M. Lee; Dorothy Ngo-Yin Fan; Felice Ho-Ching Tsang; Irene Oi-Lin Ng; Chun-Ming Wong

Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri‐methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up‐regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up‐regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up‐regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up‐regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri‐methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2‐knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well‐characterized tumor‐suppressor miRNAs, such as miR‐139‐5p, miR‐125b, miR‐101, let‐7c, and miR‐200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2‐silenced miRNAs in modulating cell motility and metastasis‐related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs. Conclusion: Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis. (HEPATOLOGY 2012)


Hepatology | 2012

Sequential alterations of microrna expression in hepatocellular carcinoma development and venous metastasis

Chun-Ming Wong; Carmen Chak-Lui Wong; Joyce M. Lee; Dorothy Ngo-Yin Fan; Sandy Leung-Kuen Au; Irene Oi-Lin Ng

Hepatocellular carcinoma (HCC) is a prevalent cancer with an extremely high mortality rate attributed to HCC metastasis, which is the major cause of tumor recurrence and organ failure. Presence of tumor thrombi in the portal veins (venous metastases) is a clinicopathological feature of metastatic HCCs. In this study, we analyzed the microRNA (miRNA) expression profiles of nontumorous livers, primary HCCs, and venous metastases in the same livers from 20 HCC patients by way of TaqMan low‐density array (TLDA) and identified the precise alterations of miRNA expression from nontumorous livers to primary HCCs and venous metastases globally. By unsupervised clustering analysis, nontumorous livers were distinctly segregated from primary HCCs and venous metastases, whereas no discernible difference in the expression pattern could be found between primary HCCs and venous metastases. However, a marked global reduction of miRNA expression levels was detected in venous metastases, as compared with primary HCCs. These data suggest that miRNA deregulation is an early event in liver carcinogenesis and the later global miRNA down‐regulation aggravates the preexisting miRNA deregulation to further promote HCC metastasis. Conclusion: Our study has enriched the current understanding of the deregulation of miRNAs in HCC progression and highlighted the sequential and distinctive alterations of miRNA expression in primary HCC and venous metastasis formation. (HEPATOLOGY 2012;)


Liver International | 2015

Long non-coding RNA HOTTIP is frequently up-regulated in hepatocellular carcinoma and is targeted by tumour suppressive miR-125b

Felice Ho-Ching Tsang; Sandy Leung-Kuen Au; Lai Wei; Dorothy Ngo-Yin Fan; Joyce M. Lee; Carmen Chak-Lui Wong; Irene Oi-Lin Ng; Chun-Ming Wong

Hepatocellular carcinoma (HCC) is one of the most common human cancers. Recently, emerging evidence has suggested the role of long non‐coding RNAs (lncRNAs) in human carcinogenesis. In this study, we aimed to investigate the expression and functional implications of lncRNAs in human HCC.


Liver International | 2010

RhoGTPases and Rho-effectors in hepatocellular carcinoma metastasis: ROCK N' Rho move it

Carmen Chak-Lui Wong; Chun-Ming Wong; Sandy Leung-Kuen Au; Irene Oi-Lin Ng

Hepatocellular carcinoma (HCC) is an intractable disease with an extremely high mortality rate. Metastasis is the major factor of liver failure, tumour recurrence and death in HCC patients. Unfortunately, no promising curative therapy for HCC metastasis is available as yet; therefore, treatment for advanced HCC still remains a formidable challenge. A large body of evidence has demonstrated that the RhoGTPases/Rho‐effector pathway plays important roles in mediating HCC metastasis based on their foremost functions in orchestrating the cell cytoskeletal reorganization. This review will first discuss the general principles of cancer metastasis and cancer cell movement with a particular focus on HCC. We will then summarize the implications of various members in the RhoGTPases/Rho‐effectors signalling cascade including the upstream RhoGTPase regulators RhoGTPases and Rho‐effectors and their downstream targets in HCC metastasis. Finally, we will discuss the therapeutic insight of targeting the RhoGTPases/Rho‐effector pathway in HCC. Taken together, the literature demonstrates the importance of the RhoGTPases/Rho‐effector signalling pathway in HCC metastasis and marks the necessity to have a more thorough knowledge of this complicated signalling network in order to develop novel therapeutic strategies for HCC patients.


PLOS ONE | 2013

EZH2-Mediated H3K27me3 Is Involved in Epigenetic Repression of Deleted in Liver Cancer 1 in Human Cancers.

Sandy Leung-Kuen Au; Carmen Chak-Lui Wong; Joyce M. Lee; Chun-Ming Wong; Irene Oi-Lin Ng

Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.


Hepatology | 2016

Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis

Chun-Ming Wong; Lai Wei; Cheuk-Ting Law; Daniel Wai-Hung Ho; Felice Ho-Ching Tsang; Sandy Leung-Kuen Au; Karen Man-Fong Sze; Joyce M. Lee; Carmen Chak-Lui Wong; Irene Oi-Lin Ng

Epigenetic deregulation plays an important role in liver carcinogenesis. Using transcriptome sequencing, we examined the expression of 591 epigenetic regulators in hepatitis B‐associated human hepatocellular carcinoma (HCC). We found that aberrant expression of epigenetic regulators was a common event in HCC. We further identified SETDB1 (SET domain, bifurcated 1), an H3K9‐specific histone methyltransferase, as the most significantly up‐regulated epigenetic regulator in human HCCs. Up‐regulation of SETDB1 was significantly associated with HCC disease progression, cancer aggressiveness, and poorer prognosis of HCC patients. Functionally, we showed that knockdown of SETDB1 reduced HCC cell proliferation in vitro and suppressed orthotopic tumorigenicity in vivo. Inactivation of SETDB1 also impeded HCC cell migration and abolished lung metastasis in nude mice. Interestingly, SETDB1 protein was consistently up‐regulated in all metastatic foci found in different organs, suggesting that SETDB1 was essential for HCC metastatic progression. Mechanistically, we showed that the frequent up‐regulation of SETDB1 in human HCC was attributed to the recurrent SETDB1 gene copy gain at chromosome 1q21. In addition, hyperactivation of specificity protein 1 transcription factor in HCC enhanced SETDB1 expression at the transcriptional level. Furthermore, we identified miR‐29 as a negative regulator of SETDB1. Down‐regulation of miR‐29 expression in human HCC contributed to SETDB1 up‐regulation by relieving its post‐transcriptional regulation. Conclusion: SETDB1 is an oncogene that is frequently up‐regulated in human HCCs; the multiplicity of SETDB1 activating mechanisms at the chromosomal, transcriptional, and posttranscriptional levels together facilitates SETDB1 up‐regulation in human HCC. (Hepatology 2016;63:474–487)


PLOS ONE | 2011

Transcriptional Repressive H3K9 and H3K27 Methylations Contribute to DNMT1-Mediated DNA Methylation Recovery

Chun-Ming Wong; Carmen Chak-Lui Wong; Yeung-Lam Ng; Sandy Leung-Kuen Au; Frankie Chi Fat Ko; Irene Oi-Lin Ng

DNA methylation and histone modifications are two major epigenetic events regulating gene expression and chromatin structure, and their alterations are linked to human carcinogenesis. DNA methylation plays an important role in tumor suppressor gene inactivation, and can be revised by DNA methylation inhibitors. The reversible nature of DNA methylation forms the basis of epigenetic cancer therapy. However, it has been reported that DNA re-methylation and gene re-silencing could occur after removal of demethylation treatment and this may significantly hamper the therapeutic value of DNA methylation inhibitors. In this study we have provided detailed evidence demonstrating that mammalian cells possess a bona fide DNA methylation recovery system. We have also shown that DNA methylation recovery was mediated by the major human DNA methyltransferase, DNMT1. In addition, we found that H3K9-tri-methylation and H3K27-tri-methylation were closely associated with this DNA methylation recovery. These persistent transcriptional repressive histone modifications may have a crucial role in regulating DNMT1-mediated DNA methylation recovery. Our findings may have important implications towards a better understanding of epigenetic regulation and future development of epigenetic therapeutic intervention.


PLOS ONE | 2014

Switching of Pyruvate Kinase Isoform L to M2 Promotes Metabolic Reprogramming in Hepatocarcinogenesis

Carmen Chak-Lui Wong; Sandy Leung-Kuen Au; Aki Pui-Wah Tse; Iris Ming-Jing Xu; Robin Kit-Ho Lai; David Kung-Chun Chiu; Larry Lai Wei; Dorothy Ngo-Yin Fan; Felice Ho-Ching Tsang; Regina Cheuk-Lam Lo; Chun-Ming Wong; Irene Oi-Lin Ng

Hepatocellular carcinoma (HCC) is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2) was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.


Frontiers of Medicine in China | 2013

Epigenetic dysregulation in hepatocellular carcinoma: focus on polycomb group proteins

Sandy Leung-Kuen Au; Irene Oi-Lin Ng; Chun-Ming Wong

Hepatocellular carcinoma (HCC) development is characterized by the presence of epigenetic alterations, including promoter DNA hypermethylation and post-translational modifications of histone, which profoundly affect expression of a wide repertoire of genes critical for cancer development. Emerging data suggest that deregulation of polycomb group (PcG) proteins, which are key chromatin modifiers repressing gene transcription during developmental stage, plays a causative role in oncogenesis. PcG proteins assemble into polycomb repressive complex 1 (PRC1) and polycomb repressive complex 2 (PRC2) to impose the histone H3 lysine 27 trimethylation (H3K27me3) modification for repression. In this review, we will first recapitulate the mechanisms of two key epigenetic pathways: DNA methylation and histone modifications. Specifically, we will focus our discussion on the molecular roles of PcG proteins. Next, we will highlight recent findings on PcG proteins, their clinicopathological implication and their downstream molecular consequence in hepatocarcinogenesis. Last but not least, we will consider the therapeutic potential of targeting enhancer of zeste homolog 2 (EZH2) as a possible treatment for HCC. Improving our understanding on the roles of PcG proteins in hepatocarcinogenesis can benefit the development of epigenetic-based therapy.


Journal of Hepatology | 2017

Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3

Lai Wei; David Kung-Chun Chiu; Felice Ho-Ching Tsang; Cheuk-Ting Law; Carol Lai‐Hung Cheng; Sandy Leung-Kuen Au; Joyce M. Lee; Carmen Chak-Lui Wong; Irene Oi-Lin Ng; Chun-Ming Wong

BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated. METHODS Gene expressions were determined by RNA-Seq and qRT-PCR. G9a knockdown and knockout cell lines were established by lentiviral-based shRNA and CRISPR/Cas9 gene editing system. Tumor-promoting functions of G9a was studied in both HCC cell lines and nude mice model. The downstream targets of G9a were identified by RNA-Seq and confirmed by ChIP assay. The therapeutic value of G9a inhibitors was evaluated both in vitro and in vivo. RESULTS We identified G9a as a frequently upregulated histone methyltransferase in human HCCs. Upregulation of G9a was significantly associated with HCC progression and aggressive clinicopathological features. Functionally, we demonstrated that inactivation of G9a by RNAi knockdown, CRISPR/Cas9 knockout, and pharmacological inhibition remarkably abolished H3K9 di-methylation and suppressed HCC cell proliferation and metastasis in both in vitro and in vivo models. Mechanistically, we showed that the frequent upregulation of G9a in human HCCs was attributed to gene copy number gain at chromosome 6p21. In addition, we identified miR-1 as a negative regulator of G9a. Loss of miR-1 relieved the post-transcriptional repression on G9a and contributed to its upregulation in human HCC. Utilizing RNA sequencing, we identified the tumor suppressor RARRES3 as a critical target of G9a. Epigenetic silencing of RARRES3 contributed to the tumor-promoting function of G9a. CONCLUSION This study shows a frequent deregulation of miR-1/G9a/RARRES3 axis in liver carcinogenesis, highlighting the pathological significance of G9a and its therapeutic potential in HCC treatment. Lay summary: In this study, we identified G9a histone methyltransferase was frequently upregulated in human HCC and contributes to epigenetic silencing of tumor suppressor gene RARRES3 in liver cancer. Targeting G9a may be a novel approach for HCC treatment.

Collaboration


Dive into the Sandy Leung-Kuen Au's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lai Wei

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge