Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saneyoshi Ueno is active.

Publication


Featured researches published by Saneyoshi Ueno.


BMC Genomics | 2010

A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study

Jérôme Durand; Catherine Bodénès; Emilie Chancerel; Jean-Marc Frigerio; Giovanni G. Vendramin; Federico Sebastiani; Anna Buonamici; Oliver Gailing; H.P. Koelewijn; Fiorella Villani; Claudia Mattioni; Marcello Cherubini; Pablo G. Goicoechea; Ana Herrán; Ziortza Ikaran; Cyril Cabane; Saneyoshi Ueno; Florian Alberto; Pierre-Yves Dumoulin; Erwan Guichoux; Antoine de Daruvar; Antoine Kremer; Christophe Plomion

BackgroundExpressed Sequence Tags (ESTs) are a source of simple sequence repeats (SSRs) that can be used to develop molecular markers for genetic studies. The availability of ESTs for Quercus robur and Quercus petraea provided a unique opportunity to develop microsatellite markers to accelerate research aimed at studying adaptation of these long-lived species to their environment. As a first step toward the construction of a SSR-based linkage map of oak for quantitative trait locus (QTL) mapping, we describe the mining and survey of EST-SSRs as well as a fast and cost-effective approach (bin mapping) to assign these markers to an approximate map position. We also compared the level of polymorphism between genomic and EST-derived SSRs and address the transferability of EST-SSRs in Castanea sativa (chestnut).ResultsA catalogue of 103,000 Sanger ESTs was assembled into 28,024 unigenes from which 18.6% presented one or more SSR motifs. More than 42% of these SSRs corresponded to trinucleotides. Primer pairs were designed for 748 putative unigenes. Overall 37.7% (283) were found to amplify a single polymorphic locus in a reference full-sib pedigree of Quercus robur. The usefulness of these loci for establishing a genetic map was assessed using a bin mapping approach. Bin maps were constructed for the male and female parental tree for which framework linkage maps based on AFLP markers were available. The bin set consisting of 14 highly informative offspring selected based on the number and position of crossover sites. The female and male maps comprised 44 and 37 bins, with an average bin length of 16.5 cM and 20.99 cM, respectively. A total of 256 EST-SSRs were assigned to bins and their map position was further validated by linkage mapping. EST-SSRs were found to be less polymorphic than genomic SSRs, but their transferability rate to chestnut, a phylogenetically related species to oak, was higher.ConclusionWe have generated a bin map for oak comprising 256 EST-SSRs. This resource constitutes a first step toward the establishment of a gene-based map for this genus that will facilitate the dissection of QTLs affecting complex traits of ecological importance.


BMC Genomics | 2010

Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak

Saneyoshi Ueno; Grégoire Le Provost; Valérie Léger; Christophe Klopp; Céline Noirot; Jean-Marc Frigerio; Franck Salin; Jérôme Salse; Michael Abrouk; Florent Murat; Oliver Brendel; Jérémy Derory; Pierre Abadie; Patrick Léger; Cyril Cabane; Aurélien Barré; Antoine de Daruvar; Arnaud Couloux; Patrick Wincker; Antoine Kremer; Christophe Plomion

BackgroundThe Fagaceae family comprises about 1,000 woody species worldwide. About half belong to the Quercus family. These oaks are often a source of raw material for biomass wood and fiber. Pedunculate and sessile oaks, are among the most important deciduous forest tree species in Europe. Despite their ecological and economical importance, very few genomic resources have yet been generated for these species. Here, we describe the development of an EST catalogue that will support ecosystem genomics studies, where geneticists, ecophysiologists, molecular biologists and ecologists join their efforts for understanding, monitoring and predicting functional genetic diversity.ResultsWe generated 145,827 sequence reads from 20 cDNA libraries using the Sanger method. Unexploitable chromatograms and quality checking lead us to eliminate 19,941 sequences. Finally a total of 125,925 ESTs were retained from 111,361 cDNA clones. Pyrosequencing was also conducted for 14 libraries, generating 1,948,579 reads, from which 370,566 sequences (19.0%) were eliminated, resulting in 1,578,192 sequences. Following clustering and assembly using TGICL pipeline, 1,704,117 EST sequences collapsed into 69,154 tentative contigs and 153,517 singletons, providing 222,671 non-redundant sequences (including alternative transcripts). We also assembled the sequences using MIRA and PartiGene software and compared the three unigene sets. Gene ontology annotation was then assigned to 29,303 unigene elements. Blast search against the SWISS-PROT database revealed putative homologs for 32,810 (14.7%) unigene elements, but more extensive search with Pfam, Refseq_protein, Refseq_RNA and eight gene indices revealed homology for 67.4% of them. The EST catalogue was examined for putative homologs of candidate genes involved in bud phenology, cuticle formation, phenylpropanoids biosynthesis and cell wall formation. Our results suggest a good coverage of genes involved in these traits. Comparative orthologous sequences (COS) with other plant gene models were identified and allow to unravel the oak paleo-history. Simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 52,834 SSRs and 36,411 SNPs. All of these are available through the Oak Contig Browser http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur/index.html.ConclusionsThis genomic resource provides a unique tool to discover genes of interest, study the oak transcriptome, and develop new markers to investigate functional diversity in natural populations.


BMC Genomics | 2013

Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing

Saneyoshi Ueno; Christophe Klopp; Jean Charles Leplé; Jérémy Derory; Céline Noirot; Valérie Léger; Elodie Prince; Antoine Kremer; Christophe Plomion; Grégoire Le Provost

BackgroundIn temperate regions, the time lag between vegetative bud burst and bud set determines the duration of the growing season of trees (i.e. the duration of wood biomass production). Dormancy, the period during which the plant is not growing, allows trees to avoid cold injury resulting from exposure to low temperatures. An understanding of the molecular machinery controlling the shift between these two phenological states is of key importance in the context of climatic change. The objective of this study was to identify genes upregulated during endo- and ecodormancy, the two main stages of bud dormancy. Sessile oak is a widely distributed European white oak species. A forcing test on young trees was first carried out to identify the period most likely to correspond to these two stages. Total RNA was then extracted from apical buds displaying endo- and ecodormancy. This RNA was used for the generation of cDNA libraries, and in-depth transcriptome characterization was performed with 454 FLX pyrosequencing technology.ResultsPyrosequencing produced a total of 495,915 reads. The data were cleaned, duplicated reads removed, and sequences were mapped onto the oak UniGene data. Digital gene expression analysis was performed, with both R statistics and the R-Bioconductor packages (edgeR and DESeq), on 6,471 contigs with read numbers ≥ 5 within any contigs. The number of sequences displaying significant differences in expression level (read abundance) between endo- and ecodormancy conditions ranged from 75 to 161, depending on the algorithm used. 13 genes displaying significant differences between conditions were selected for further analysis, and 11 of these genes, including those for glutathione-S-transferase (GST) and dehydrin xero2 (XERO2) were validated by quantitative PCR.ConclusionsThe identification and functional annotation of differentially expressed genes involved in the “response to abscisic acid”, “response to cold stress” and “response to oxidative stress” categories constitutes a major step towards characterization of the molecular network underlying vegetative bud dormancy, an important life history trait of long-lived organisms.


Molecular Ecology | 2004

Spatial genetic structure among and within populations of Primula sieboldii growing beside separate streams

Naoko Kitamoto; M. Honjo; Saneyoshi Ueno; Akio Takenaka; Yoshihiko Tsumura; Izumi Washitani; Ryo Ohsawa

We investigated the hierarchical genetic structure of SSR (simple sequence repeats) and cpDNA (chloroplast DNA) polymorphisms among and within populations of Primula sieboldii, a heterostylous clonal herb. Seven out of eight populations at the study site, located in a mountainous region of Nagano Prefecture, had each developed alongside a different stream, and the other occurred on a flat area 70 m from the nearest stream. The magnitude of genetic differentiation among streamside populations in maternally inherited cpDNA (Φ = 0.341) was much higher than that in biparentally inherited SSRs (Φ = 0.011). This result suggests that seed dispersal among streams was restricted, and pollen was the primary agent of gene flow among streamside populations. In contrast, genetic differentiation among subpopulations within streams were low at both markers (Φ = 0.053 for cpDNA, Φ = 0.025 for SSR). This low differentiation among subpopulations in cpDNA compared with that among streamside populations suggest that seed dispersal occur along the stream probably during flooding. This hypothesis was supported by the fact that in cpDNA haplotypes, no clear genetic structure was detected within the streamside population, while a significant genetic structure was found within 20 m in the nonstreamside population. Furthermore, within the streamside populations, two pairs of ramets with identical multilocus genotypes for eight SSR loci were distantly (> 50 m) distributed along the same streamside, suggesting dispersal of clonal propagule. Our study showed that the heterogeneity of the landscape can influence gene flow and hence spatial genetic structure.


BMC Genomics | 2012

A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica

Saneyoshi Ueno; Yoshinari Moriguchi; Kentaro Uchiyama; Tokuko Ujino-Ihara; Norihiro Futamura; Tetsuya Sakurai; Kenji Shinohara; Yoshihiko Tsumura

BackgroundMicrosatellites or simple sequence repeats (SSRs) in expressed sequence tags (ESTs) are useful resources for genome analysis because of their abundance, functionality and polymorphism. The advent of commercial second generation sequencing machines has lead to new strategies for developing EST-SSR markers, necessitating the development of bioinformatic framework that can keep pace with the increasing quality and quantity of sequence data produced. We describe an open scheme for analyzing ESTs and developing EST-SSR markers from reads collected by Sanger sequencing and pyrosequencing of sugi (Cryptomeria japonica).ResultsWe collected 141,097 sequence reads by Sanger sequencing and 1,333,444 by pyrosequencing. After trimming contaminant and low quality sequences, 118,319 Sanger and 1,201,150 pyrosequencing reads were passed to the MIRA assembler, generating 81,284 contigs that were analysed for SSRs. 4,059 SSRs were found in 3,694 (4.54%) contigs, giving an SSR frequency lower than that in seven other plant species with gene indices (5.4–21.9%). The average GC content of the SSR-containing contigs was 41.55%, compared to 40.23% for all contigs. Tri-SSRs were the most common SSRs; the most common motif was AT, which was found in 655 (46.3%) di-SSRs, followed by the AAG motif, found in 342 (25.9%) tri-SSRs. Most (72.8%) tri-SSRs were in coding regions, but 55.6% of the di-SSRs were in non-coding regions; the AT motif was most abundant in 3′ untranslated regions. Gene ontology (GO) annotations showed that six GO terms were significantly overrepresented within SSR-containing contigs. Forty–four EST-SSR markers were developed from 192 primer pairs using two pipelines: read2Marker and the newly-developed CMiB, which combines several open tools. Markers resulting from both pipelines showed no differences in PCR success rate and polymorphisms, but PCR success and polymorphism were significantly affected by the expected PCR product size and number of SSR repeats, respectively. EST-SSR markers exhibited less polymorphism than genomic SSRs.ConclusionsWe have created a new open pipeline for developing EST-SSR markers and applied it in a comprehensive analysis of EST-SSRs and EST-SSR markers in C. japonica. The results will be useful in genomic analyses of conifers and other non-model species.


American Journal of Botany | 2007

Population differentiation and gene flow within a metapopulation of a threatened tree, Magnolia stellata (Magnoliaceae)

Suzuki Setsuko; Kiyoshi Ishida; Saneyoshi Ueno; Yoshihiko Tsumura; Nobuhiro Tomaru

We examined genetic differentiation among eight local populations of a metapopulation of Magnolia stellata using 10 nuclear and three chloroplast microsatellite (nSSR and cpSSR) markers and evaluated the influence of historical gene flow on population differentiation. The coefficient of genetic differentiation among populations for nSSR (F(ST) = 0.053) was less than half that for cpSSR (0.137). An isolation-by-distance pattern was detected for nSSRs, but not cpSSRs. These results suggest that pollen flow, as well as seed dispersal, has significantly reduced genetic differentiation among populations. We also examined patterns of contemporary pollen flow by paternity analysis of seeds from nine seed parents in one of the populations using the nSSR markers and found it to be greatly restricted by the distance between parents. Although most pollen flow occurred within the population, pollen flow from outside the population accounted for 2.5% of the total. When historical and contemporary pollen flows among populations were compared, the levels of pollen flow seem to have declined recently. We conclude that to conserve M. stellata, it is important to preserve the whole population by maintaining its metapopulation structure and the gene flow among its populations.


Heredity | 2012

Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica

Yoshihiko Tsumura; K Uchiyama; Y Moriguchi; Saneyoshi Ueno; T Ihara-Ujino

Local adaptation is important in evolutionary processes and speciation. We used multiple tests to identify several candidate genes that may be involved in local adaptation from 1026 loci in 14 natural populations of Cryptomeria japonica, the most economically important forestry tree in Japan. We also studied the relationships between genotypes and environmental variables to obtain information on the selective pressures acting on individual populations. Outlier loci were mapped onto a linkage map, and the positions of loci associated with specific environmental variables are considered. The outlier loci were not randomly distributed on the linkage map; linkage group 11 was identified as a genomic island of divergence. Three loci in this region were also associated with environmental variables such as mean annual temperature, daily maximum temperature, maximum snow depth, and so on. Outlier loci identified with high significance levels will be essential for conservation purposes and for future work on molecular breeding.


BMC Genomics | 2012

The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don

Yoshinari Moriguchi; Tokuko Ujino-Ihara; Kentaro Uchiyama; Norihiro Futamura; Maki Saito; Saneyoshi Ueno; Asako Matsumoto; Naoki Tani; Hideaki Taira; Kenji Shinohara; Yoshihiko Tsumura

BackgroundHigh-density linkage maps facilitate the mapping of target genes and the construction of partial linkage maps around target loci to develop markers for marker-assisted selection (MAS). MAS is quite challenging in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile gene (ms1) for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious social pollinosis problems.ResultsWe constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-derived co-dominant single nucleotide polymorphism (SNP) markers, most of which were genotyped using the GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf) that is closely linked to the ms1 gene, being separated from it by only 0.5 cM.ConclusionsUsing the high-density map, we located the ms1 gene on the 9th linkage group and constructed a partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis problems without harming productivity.


American Journal of Botany | 2006

Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (primulaceae)

Naoko Kitamoto; Saneyoshi Ueno; Akio Takenaka; Yoshihiko Tsumura; Izumi Washitani; Ryo Ohsawa

To evaluate the effects of flowering phenology on pollen flow distance and spatial genetic structure in a population of a bumblebee-pollinated herb, Primula sieboldii, we investigated the flowering phenology of 1712 flowers of 97 genets in a population in Nagano Prefecture, Japan, and constructed a mating model based on the observed mating pattern, which was revealed by paternity analysis using 11 microsatellite markers. The effects of flowering phenology were inferred by comparing estimated pollen flow distance and the level of heterozygosity in the next generation between two scenarios. In the first scenario, both the intergenet distance and flowering phenology influenced mating opportunity, while in the second scenario only intergenet distance influenced mating opportunity. Although the frequency distribution of pollen flow distance at the population level did not differ significantly between the two scenarios, the mean pollen flow distance of several flowers increased by more than 10 m as a result of variation in flowering phenology. Furthermore, accounting for flowering phenology predicted change in heterozygosity in the next generation from -0.04 to 0.07. The results showed that flowering phenology can affect pollen flow distance and spatial genetic structure.


Molecular Ecology | 2005

Gene flow and inbreeding depression inferred from fine-scale genetic structure in an endangered heterostylous perennial, Primula sieboldii

Fumiko Ishihama; Saneyoshi Ueno; Yoshihiko Tsumura; Izumi Washitani

We estimated the gene dispersal distance and the magnitude of inbreeding depression from the fine‐scale genetic structure in the endangered heterostylous perennial Primula sieboldii. We indirectly estimated the neighbourhood size (Nb) and the standard deviation of gene dispersal distance (σg) from the detected genetic structure by using 10 microsatellite markers. We also estimated the fitness reduction in mating among neighbouring individuals caused by biparental inbreeding according to the genetic structure. We found clear fine‐scale genetic structure (a significantly positive kinship coefficient within 42.3 m), and the indirect estimates of σg and Nb were 15.7 m and 50.9, respectively. These indirect estimates were similar to the direct estimates (18.4 m and 44.0). The slightly larger indirect estimate of Nb may reflect that inbreeding depression and genetic structure or rare long‐distance dispersal that were overlooked in the direct estimate have elongated the long‐term average of gene dispersal distance. P. sieboldii is also likely to suffer about 19% fitness reduction in progenies from mating among individuals 5 m apart. Our results suggest that biparental inbreeding and genetic structure can affect the range of gene dispersal and seed reproductive success in P. sieboldii.

Collaboration


Dive into the Saneyoshi Ueno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Plomion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge