Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sang Cheol Kim is active.

Publication


Featured researches published by Sang Cheol Kim.


Nature Genetics | 2014

A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma

Hae Yong Yoo; Min Kyung Sung; Seung Ho Lee; Sangok Kim; Haeseung Lee; Seongjin Park; Sang Cheol Kim; Byungwook Lee; Kyoohyoung Rho; Jongeun Lee; Kwang-Hwi Cho; Wankyu Kim; Hyunjung Ju; Jaesang Kim; Seok Jin Kim; Won Seog Kim; Sanghyuk Lee; Young Hyeh Ko

The molecular mechanisms underlying angioimmunoblastic T cell lymphoma (AITL), a common type of mature T cell lymphoma of poor prognosis, are largely unknown. Here we report a frequent somatic mutation in RHOA (encoding p.Gly17Val) using exome and transcriptome sequencing of samples from individuals with AITL. Further examination of the RHOA mutation encoding p.Gly17Val in 239 lymphoma samples showed that the mutation was specific to T cell lymphoma and was absent from B cell lymphoma. We demonstrate that the RHOA mutation encoding p.Gly17Val, which was found in 53.3% (24 of 45) of the AITL cases examined, is oncogenic in nature using multiple molecular assays. Molecular modeling and docking simulations provided a structural basis for the loss of GTPase activity in the RHOA Gly17Val mutant. Our experimental data and modeling results suggest that the RHOA mutation encoding p.Gly17Val is a driver mutation in AITL. On the basis of these data and through integrated pathway analysis, we build a comprehensive signaling network for AITL oncogenesis.


Genome Biology | 2015

Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells

K.-W. Kim; Hye Won Lee; Hae-Ock Lee; Sang Cheol Kim; Yun Jee Seo; Woosung Chung; Hye Hyeon Eum; Do-Hyun Nam; Junhyong Kim; Kyeung Min Joo; Woong-Yang Park

BackgroundIntra-tumoral genetic and functional heterogeneity correlates with cancer clinical prognoses. However, the mechanisms by which intra-tumoral heterogeneity impacts therapeutic outcome remain poorly understood. RNA sequencing (RNA-seq) of single tumor cells can provide comprehensive information about gene expression and single-nucleotide variations in individual tumor cells, which may allow for the translation of heterogeneous tumor cell functional responses into customized anti-cancer treatments.ResultsWe isolated 34 patient-derived xenograft (PDX) tumor cells from a lung adenocarcinoma patient tumor xenograft. Individual tumor cells were subjected to single cell RNA-seq for gene expression profiling and expressed mutation profiling. Fifty tumor-specific single-nucleotide variations, including KRASG12D, were observed to be heterogeneous in individual PDX cells. Semi-supervised clustering, based on KRASG12D mutant expression and a risk score representing expression of 69 lung adenocarcinoma-prognostic genes, classified PDX cells into four groups. PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome signatures consistent with the group characterized by KRASG12D and low risk score.ConclusionsSingle-cell RNA-seq on viable PDX cells identified a candidate tumor cell subgroup associated with anti-cancer drug resistance. Thus, single-cell RNA-seq is a powerful approach for identifying unique tumor cell-specific gene expression profiles which could facilitate the development of optimized clinical anti-cancer strategies.


PLOS ONE | 2011

Genetic and Metabolic Characterization of Insomnia

Hyo-Jeong Ban; Sang Cheol Kim; Jungmin Seo; Ho Bum Kang; Jung Kyoon Choi

Insomnia is reported to chronically affect 10∼15% of the adult population. However, very little is known about the genetics and metabolism of insomnia. Here we surveyed 10,038 Korean subjects whose genotypes have been previously profiled on a genome-wide scale. About 16.5% reported insomnia and displayed distinct metabolic changes reflecting an increase in insulin secretion, a higher risk of diabetes, and disrupted calcium signaling. Insomnia-associated genotypic differences were highly concentrated within genes involved in neural function. The most significant SNPs resided in ROR1 and PLCB1, genes known to be involved in bipolar disorder and schizophrenia, respectively. Putative enhancers, as indicated by the histone mark H3K4me1, were discovered within both genes near the significant SNPs. In neuronal cells, the enhancers were bound by PAX6, a neural transcription factor that is essential for central nervous system development. Open chromatin signatures were found on the enhancers in human pancreas, a tissue where PAX6 is known to play a role in insulin secretion. In PLCB1, CTCF was found to bind downstream of the enhancer and interact with PAX6, suggesting that it can probably inhibit gene activation by PAX6. PLCB4, a circadian gene that is closely located downstream of PLCB1, was identified as a candidate target gene. Hence, dysregulation of ROR1, PLCB1, or PLCB4 by PAX6 and CTCF may be one mechanism that links neural and pancreatic dysfunction not only in insomnia but also in the relevant psychiatric disorders that are accompanied with circadian rhythm disruption and metabolic syndrome.


Genetics | 2007

Environmental Effects on Gene Expression Phenotype Have Regional Biases in the Human Genome

Jung Kyoon Choi; Sang Cheol Kim

Phenotypic discordance between monozygotic twins, such as a difference in disease susceptibility, implicates the role of the environment in determining phenotype. To assess genomewide environmental effects on “gene expression phenotype,” we employed a published microarray data set for twins. We found that variations in expression phenotypes between monozygotic twins have biases in their chromosomal locations. They also showed a strong inverse correlation with gene density. Genomic regions of low gene density were environmentally sensitive, containing genes involved in response to external signals, cell differentiation, and development, etc. Genetic factors were found to make no contribution to the observed regional biases, stressing the role of epigenetics. We propose that epigenetic modifications might occur more frequently in heterochromatic, gene-poor regions in response to environmental signals while gene-rich regions tend to remain in an active chromatin configuration for the constitutive expression of underlying genes.


Cell Stem Cell | 2014

SET7/9 Methylation of the Pluripotency Factor LIN28A Is a Nucleolar Localization Mechanism that Blocks let-7 Biogenesis in Human ESCs

Seung Kyoon Kim; Hosuk Lee; Kyu-Min Han; Sang Cheol Kim; Yoonjung Choi; Sang Wook Park; Geunu Bak; Younghoon Lee; Jung Kyoon Choi; Tae Kyung Kim; Yong Mahn Han; Daeyoup Lee

LIN28-mediated processing of the microRNA (miRNA) let-7 has emerged as a multilevel program that controls self-renewal in embryonic stem cells. LIN28A is believed to act primarily in the cytoplasm together with TUT4/7 to prevent final maturation of let-7 by Dicer, whereas LIN28B has been suggested to preferentially act on nuclear processing of let-7. Here, we find that SET7/9 monomethylation in a putative nucleolar localization region of LIN28A increases its nuclear retention and protein stability. In the nucleoli of human embryonic stem cells, methylated LIN28A sequesters pri-let-7 and blocks its processing independently of TUT4/7. The nuclear form of LIN28A regulates transcriptional changes in MYC-pathway targets, thereby maintaining stemness programs and inhibiting expression of early lineage-specific markers. These findings provide insight into the molecular mechanism underlying the posttranslational methylation of nuclear LIN28A and its ability to modulate pluripotency by repressing let-7 miRNA expression in human embryonic stem cells.


PLOS Genetics | 2013

Genetic Landscape of Open Chromatin in Yeast

Kibaick Lee; Sang Cheol Kim; Inkyung Jung; Kwoneel Kim; Jungmin Seo; Heun-Sik Lee; Gireesh K. Bogu; Dongsup Kim; Sanghyuk Lee; Byungwook Lee; Jung Kyoon Choi

Chromatin regulation underlies a variety of DNA metabolism processes, including transcription, recombination, repair, and replication. To perform a quantitative genetic analysis of chromatin accessibility, we obtained open chromatin profiles across 96 genetically different yeast strains by FAIRE (formaldehyde-assisted isolation of regulatory elements) assay followed by sequencing. While 5∼10% of open chromatin region (OCRs) were significantly affected by variations in their underlying DNA sequences, subtelomeric areas as well as gene-rich and gene-poor regions displayed high levels of sequence-independent variation. We performed quantitative trait loci (QTL) mapping using the FAIRE signal for each OCR as a quantitative trait. While individual OCRs were associated with a handful of specific genetic markers, gene expression levels were associated with many regulatory loci. We found multi-target trans-loci responsible for a very large number of OCRs, which seemed to reflect the widespread influence of certain chromatin regulators. Such regulatory hotspots were enriched for known regulatory functions, such as recombinational DNA repair, telomere replication, and general transcription control. The OCRs associated with these multi-target trans-loci coincided with recombination hotspots, telomeres, and gene-rich regions according to the function of the associated regulators. Our findings provide a global quantitative picture of the genetic architecture of chromatin regulation.


Genetics | 2006

Impact of Transcriptional Properties on Essentiality and Evolutionary Rate

Jung Kyoon Choi; Sang Cheol Kim; Jungmin Seo; Sangsoo Kim; Jong Bhak

We characterized general transcriptional activity and variability of eukaryotic genes from global expression profiles of human, mouse, rat, fly, plants, and yeast. The variability shows a higher degree of divergence between distant species, implying that it is more closely related to phenotypic evolution, than the activity. More specifically, we show that transcriptional variability should be a true indicator of evolutionary rate. If we rule out the effect of translational selection, which seems to operate only in yeast, the apparent slow evolution of highly expressed genes should be attributed to their low variability. Meanwhile, rapidly evolving genes may acquire a high level of transcriptional variability and contribute to phenotypic variations. Essentiality also seems to be correlated with the variability, not the activity. We show that indispensable or highly interactive proteins tend to be present in high abundance to maintain a low variability. Our results challenge the current theory that highly expressed genes are essential and evolve slowly. Transcriptional variability, rather than transcriptional activity, might be a common indicator of essentiality and evolutionary rate, contributing to the correlation between the two variables.


Oncotarget | 2017

The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP

Hyunchul Jung; Hae Yong Yoo; Seung Ho Lee; Sohyun Shin; Sang Cheol Kim; Sejoon Lee; Je-Gun Joung; Jae-Yong Nam; Daeun Ryu; Jae Won Yun; Jung Kyoon Choi; Ambarnil Ghosh; Kyeong Kyu Kim; Seok Jin Kim; Won Seog Kim; Woong-Yang Park; Young-Hyeh Ko

Ocular marginal zone lymphoma is a common type of low-grade B-cell lymphoma. To investigate the genomic changes that occur in ocular marginal zone lymphoma, we analyzed 10 cases of ocular marginal zone lymphoma using whole-genome and RNA sequencing and an additional 38 cases using targeted sequencing. Major genetic alterations affecting genes involved in nuclear factor (NF)-κB pathway activation (60%), chromatin modification and transcriptional regulation (44%), and B-cell differentiation (23%) were identified. In whole-genome sequencing, the 6q23.3 region containing TNFAIP3 was deleted in 5 samples (50%). In addition, 5 structural variation breakpoints in the first intron of IL20RA located in the 6q23.3 region was found in 3 samples (30%). In targeted sequencing, a disruptive mutation of TNFAIP3 was the most common alteration (54%), followed by mutations of TBL1XR1 (18%), cAMP response element binding proteins (CREBBP) (17%) and KMT2D (6%). All TBL1XR1 mutations were located within the WD40 domain, and TBL1XR1 mutants transfected into 293T cells increased TBL1XR1 binding with nuclear receptor corepressor (NCoR), leading to increased degradation of NCoR and the activation of NF-κB and JUN target genes. This study confirms genes involving in the activation of the NF-kB signaling pathway is the major driver in the oncogenesis of ocular MZL.


Genome Biology | 2014

Genetic factors underlying discordance in chromatin accessibility between monozygotic twins

Kwoneel Kim; Hyo-Jeong Ban; Jungmin Seo; Ki Baick Lee; Maryam Yavartanoo; Sang Cheol Kim; Kiejung Park; Seong Beom Cho; Jung Kyoon Choi

BackgroundOpen chromatin is implicated in regulatory processes; thus, variations in chromatin structure may contribute to variations in gene expression and other phenotypes. In this work, we perform targeted deep sequencing for open chromatin, and array-based genotyping across the genomes of 72 monozygotic twins to identify genetic factors regulating co-twin discordance in chromatin accessibility.ResultsWe show that somatic mutations cause chromatin discordance mainly via the disruption of transcription factor binding sites. Structural changes in DNA due to C:G to A:T transversions are under purifying selection due to a strong impact on chromatin accessibility. We show that CpGs whose methylation is specifically regulated during cellular differentiation appear to be protected from high mutation rates of 5′-methylcytosines, suggesting that the spectrum of CpG variations may be shaped fully at the developmental level but not through natural selection. Based on the association mapping of within-pair chromatin differences, we search for cases in which twin siblings with a particular genotype had chromatin discordance at the relevant locus. We identify 1,325 chromatin sites that are differentially accessible, depending on the genotype of a nearby locus, suggesting that epigenetic differences can control regulatory variations via interactions with genetic factors. Poised promoters present high levels of chromatin discordance in association with either somatic mutations or genetic-epigenetic interactions.ConclusionOur observations illustrate how somatic mutations and genetic polymorphisms may contribute to regulatory, and ultimately phenotypic, discordance.


Nucleic Acids Research | 2015

Global transcription network incorporating distal regulator binding reveals selective cooperation of cancer drivers and risk genes.

Kwoneel Kim; Woojin Yang; Kang Seon Lee; Hyoeun Bang; Kiwon Jang; Sang Cheol Kim; Jin Ok Yang; Seong-Jin Park; Kiejung Park; Jung Kyoon Choi

Global network modeling of distal regulatory interactions is essential in understanding the overall architecture of gene expression programs. Here, we developed a Bayesian probabilistic model and computational method for global causal network construction with breast cancer as a model. Whereas physical regulator binding was well supported by gene expression causality in general, distal elements in intragenic regions or loci distant from the target gene exhibited particularly strong functional effects. Modeling the action of long-range enhancers was critical in recovering true biological interactions with increased coverage and specificity overall and unraveling regulatory complexity underlying tumor subclasses and drug responses in particular. Transcriptional cancer drivers and risk genes were discovered based on the network analysis of somatic and genetic cancer-related DNA variants. Notably, we observed that the risk genes were functionally downstream of the cancer drivers and were selectively susceptible to network perturbation by tumorigenic changes in their upstream drivers. Furthermore, cancer risk alleles tended to increase the susceptibility of the transcription of their associated genes. These findings suggest that transcriptional cancer drivers selectively induce a combinatorial misregulation of downstream risk genes, and that genetic risk factors, mostly residing in distal regulatory regions, increase transcriptional susceptibility to upstream cancer-driving somatic changes.

Collaboration


Dive into the Sang Cheol Kim's collaboration.

Top Co-Authors

Avatar

Kiejung Park

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Ok Yang

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seong-Jin Park

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge