Sang Do Lee
Chungnam National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sang Do Lee.
Biochemical and Biophysical Research Communications | 2009
Jeong-Ah Hwang; Eun Hui Lee; Sang Do Lee; Jin Bong Park; Byeong Hwa Jeon; Chung-Hyun Cho
Endotoxemia is characterized by multiple dysfunctions of the micro-vascular endothelium. Of these, vascular leakage is an initial event that aggravates vascular dysfunction can lead to systemic vascular collapse and organ failure. Thus, prevention of vascular leakage may ameliorate endotoxin-induced dysfunctions of blood vessels. Here we examine the effect of an angiopoietin-1 variant, COMP-Ang1, on endotoxin-induced vascular leakage in mice. COMP-Ang1 significantly reduced endotoxin-induced vascular leakage in the lung, heart, and kidney, but not in liver or intestine. Interestingly, COMP-Ang1 attenuated endotoxin-induced lung damage, presumably due to reduced infiltration of macrophages. Moreover, COMP-Ang1 restored the level of PECAM-1 expression, which is significantly reduced by endotoxin challenge. This study suggests that COMP-Ang1 reduces endotoxin-induced vascular leakage by restoration of cellular junctions and subsequent attenuation of leukocyte infiltration.
Cancer Research and Treatment | 2015
Ju Hyun Shin; Sunga Choi; Yu Ran Lee; Myoung Soo Park; Yong Gil Na; Kaikobad Irani; Sang Do Lee; Jin Bong Park; Jin-Man Kim; Jae Sung Lim; Byeong Hwa Jeon
Purpose Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that shows elevated expression in a number of cancers. We attempted to determine whether serum APE1/Ref-1 is elevated in patients with bladder cancer. Materials and Methods Serum APE1/Ref-1 levels were determined using enzyme-linked immunosorbent assay in serum from patients with bladder cancer who had not received chemotherapy or radiotherapy (n=51) and non-tumor controls (n=55). The area under the receiver operating characteristic area under the curve was applied to determine the correlation between clinical factors and the serum levels of APE1/Ref-1. Results Serum levels of APE1/Ref-1 in bladder cancer patients were significantly elevated compared to those of the control group (3.548±0.333 ng/100 μL [n=51] for bladder cancer vs. 1.547±0.319 ng/100 μL [n=55] for the control group), with a sensitivity and specificity of 93% and 59%, respectively. Serum APE1/Ref-1 levels are associated with tumor stage, grade, muscle invasion, and recurrence. Conclusion Serum APE1/Ref-1 might be useful as a potential serologic biomarker for bladder cancer.
The American Journal of Chinese Medicine | 2015
Jung-Wan Choi; Suk-Yun Kang; Jae-Gyun Choi; Dong-Wook Kang; Soo Jin Kim; Sang Do Lee; Jin Bong Park; Yeon-Hee Ryu; Hyunwoo Kim
This study was designed to determine the antinociceptive effect and related neuronal mechanism of electroacupuncture (EA) on paclitaxel (PTX)-induced neuropathic pain in mice. PTX (4 mg/kg, i.p.) was administered once a day for 5 consecutive days to induce neuropathic pain. EA stimulation (2 mA, 2 Hz, 30 min) was applied at the ST36 acupoint bilaterally once in every 2 days. Repeated EA stimulation significantly attenuated PTX-induced mechanical allodynia and thermal hyperalgesia. In a separate set of experiment, the antinociceptive effect of a single EA stimulation 8 days after PTX treatment was reduced by intrathecal pretreatment with naloxone (opioid receptor antagonist), idazoxan (alpha2-adrenoceptor antagonist) or propranolol (beta-adrenoceptor antagonist), but not prazosin (alpha1-adrenoceptor antagonist). Moreover, EA remarkably suppressed the PTX-enhanced phosphorylation of the NMDA receptor NR2B subunit in the spinal dorsal horn, and intrathecal pretreatment of naloxone, idazoxan (IDA) or propranolol blocked the effect of EA. In conclusion, EA stimulation at the ST36 acupoint significantly diminished PTX-induced neuropathic pain in mice via the mediation of spinal opioid receptor, alpha2- and beta-adrenoceptors.
Molecules and Cells | 2013
Myoung Soo Park; Cuk-Seong Kim; Hee Kyoung Joo; Yu Ran Lee; Gun Kang; Soo Jin Kim; Sunga Choi; Sang Do Lee; Jin Bong Park; Byeong Hwa Jeon
Apurinic/apyrimidinic endonuclease1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in base excision DNA repair and transcriptional regulation of gene expression. APE1/Ref-1 is mainly localized in the nucleus, but cytoplasmic localization has also been reported. However, the functional role of cytoplasmic APE1/Ref-1 and its redox cysteine residue are still unknown. We investigated the role of cytoplasmic APE1/Ref-1 on tumor necrosis factor-α (TNF-α)-induced vascular cell adhesion molecule-1 (VCAM-1) expressions in endothelial cells. Endogenous APE1/Ref-1 was mainly observed in the nucleus, however, cytoplasmic APE1/Ref-1 was increased by TNF-α. Cytoplasmic APE1/Ref-1 expression was not blunted by cycloheximide, a protein synthesis inhibitor, suggesting cytoplasmic translocation of APE1/Ref-1. Transfection of an N-terminus deletion mutant APE1/Ref-1(29-318) inhibited TNF-α-induced VCAM-1 expression, indicating an anti-inflammatory role for APE1/Ref-1 in the cytoplasm. In contrast, redox mutant of APE1/Ref-1 (C65A/C93A) transfection led to increased TNF-α-induced VCAM-1 expression. Our findings suggest cytoplasmic APE1/Ref-1 localization and redox cysteine residues of APE1/Ref-1 are associated with its anti-inflammatory activity in endothelial cells.
The Korean Journal of Physiology and Pharmacology | 2011
Eun Jung Cho; Myoung Soo Park; Sahng Seop Kim; Gun Kang; Sunga Choi; Yoo Rhan Lee; Seok Jong Chang; Kwon Ho Lee; Sang Do Lee; Jin Bong Park; Byeong Hwa Jeon
Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD (10~100µg/ml) did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of 0.1~10µg/ml with an ED50 value of 2µg/ml. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high K+ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium.
Scientific Reports | 2016
Myoung Soo Park; Sunga Choi; Yu Ran Lee; Hee Kyoung Joo; Gun Kang; Cuk-Seong Kim; Soo Jin Kim; Sang Do Lee; Byeong Hwa Jeon
Apurinic apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is a multifunctional protein with redox activity and is proved to be secreted from stimulated cells. The aim of this study was to evaluate the functions of extracellular APE1/Ref-1 with respect to leading anti-inflammatory signaling in TNF-α-stimulated endothelial cells in response to acetylation. Treatment of TNF-α-stimulated endothelial cells with an inhibitor of deacetylase that causes intracellular acetylation, considerably suppressed vascular cell adhesion molecule-1 (VCAM-1). During TSA-mediated acetylation in culture, a time-dependent increase in secreted APE1/Ref-1 was confirmed. The acetyl moiety of acetylated-APE1/Ref-1 was rapidly removed based on the removal kinetics. Additionally, recombinant human (rh) APE1/Ref-1 with reducing activity induced a conformational change in rh TNF-α receptor 1 (TNFR1) by thiol-disulfide exchange. Following treatment with the neutralizing anti-APE1/Ref-1 antibody, inflammatory signals via the binding of TNF-α to TNFR1 were remarkably recovered, leading to up-regulation of reactive oxygen species generation and VCAM-1, in accordance with the activation of p66shc and p38 MAPK. These results strongly indicate that anti-inflammatory effects in TNF-α-stimulated endothelial cells by acetylation are tightly linked to secreted APE1/Ref-1, which inhibits TNF-α binding to TNFR1 by reductive conformational change, with suggestion as an endogenous inhibitor of vascular inflammation.
The Korean Journal of Physiology and Pharmacology | 2015
Min-Woong Kang; Hee-Jung Song; Shin Kwang Kang; Yonghwan Kim; Saet-Byel Jung; Sungju Jee; Jae Young Moon; Kwang-Sun Suh; Sang Do Lee; Byeong Hwa Jeon; Cuk-Seong Kim
Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-α (TNF-α). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-α for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogen-activated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM (0.01~100 µg/mL) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-α (3 ng/mL), and it dose dependently prevented the TNF-α-induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-α-induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-α-induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.
Biochemical and Biophysical Research Communications | 2011
Ji Young Lee; Kyoung Sook Park; Eun Jung Cho; Hee Kyoung Joo; Sang Ki Lee; Sang Do Lee; Jin Bong Park; Seok Jong Chang; Byeong Hwa Jeon
Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including human specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1min and its transduction reached a maximum at 1h within cell lysates. The cellular uptake of HOXA5-EGFP at 37°C was greater than in 4°C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100nM) inhibited TNF-α-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.
The Korean Journal of Physiology and Pharmacology | 2012
Sang Ki Lee; Ji Young Lee; Hee Kyoung Joo; Eun Jung Cho; Cuk Seong Kim; Sang Do Lee; Jin Bong Park; Byeong Hwa Jeon
We evaluated the role of Tat-mediated p66shc transduction on the activation of endothelial nitric oxide synthase in cultured mouse endothelial cells. To construct the Tat-p66shc fusion protein, human full length p66shc cDNA was fused with the Tat-protein transduction domain. Transduction of TAT-p66shc showed a concentration- and time-dependent manner in endothelial cells. Tat-mediated p66shc transduction showed increased hydrogen peroxide and superoxide production, compared with Tat-p66shc (S/A), serine 36 residue mutant of p66shc. Tat-mediated p66shc transduction decreased endothelial nitric oxide synthase phosphorylation in endothelial cells. Furthermore, Tat-mediated p66shc transduction augmented TNF-α-induced p38 MAPK phosphorylation in endothelial cells. These results suggest that Tat-mediated p66shc transduction efficiently inhibited endothelial nitric oxide synthase phosphorylation in endothelial cells.
Anatomy & Cell Biology | 2010
Young Sook Lee; Dong Woon Kim; Sooil Kim; Hye Choi; Young Lee; Chang Deok Kim; Jeung Hoon Lee; Sang Do Lee; Young Ho Lee
Nuclear factor of activated T-cells (NFAT) proteins are, calcium-regulated transcription factors, key regulator of stimulation-dependent gene activation. In our microarray analysis for the genes expressed in human black and white hairs, NFAT2 was significantly upregulated in the white hair, compared to the black hair. The aim of this study was to investigate functional role of NFAT2 in melanogenesis. Western blot analysis was performed to investigate the expression of NFAT2 protein in B16 melanoma cells. Our data showed that NFAT2 expression was increased in the hypopigmented B16 cells, while tyrosinase and MITF expression was decreased. To investigate the potential role of NFAT2, the recombinant adenovirus expressing microRNA specific for NFAT2 was transduced into the cultured B16 melanoma cells. Consistently, inhibition of NFAT2 enhanced tyrosinase activity and melanin content. Moreover, cyclosporine A, which is known as a calcineurin inhibitor blocking NFAT activation, enhanced tyrosinase activity and melanin content. These data suggest that NFAT2 may play an important role in regulation of melanogenesis in melanocyte.