Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sang-Mi Han is active.

Publication


Featured researches published by Sang-Mi Han.


Apoptosis | 2012

Protective effect of melittin on inflammation and apoptosis in acute liver failure.

Ji-Hyun Park; Kyung-Hyun Kim; Woo-Ram Lee; Sang-Mi Han; Kwan-Kyu Park

Acute hepatic failure remains an extremely poor prognosis and still results in high mortality. Therefore, better treatment is urgently needed. Melittin, a major component of bee venom, is known to inhibit inflammatory reactions induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α in various cell types. However, there is no evidence of the anti-inflammatory and anti-apoptotic effect of melittin on liver cells. In the present study, we investigated the effects of melittin on d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced acute hepatic failure. Acute liver injury was induced with GalN/LPS to determine in vivo efficacy of melittin. Mice were randomly divided into four groups: sterile saline treated group (NC), melittin only treated group (NM), GalN/LPS-treated group (GalN/LPS), and GalN/LPS treated with melittin group (M+GalN/LPS). Mice were given intraperitoneal GalN/LPS with or without melittin treatment. Liver injury was assessed biochemically and histologically. Inflammatory cytokines in the serum, apoptosis of hepatocytes, and cleavage of caspase-3 in the liver were determined. The expression of TNF-α and interleukin (IL)-1β were increased in the GalN/LPS group. However, treatment of melittin attenuated the increase of inflammatory cytokines. The M+GalN/LPS group showed significantly fewer apoptotic cells compared to the GalN/LPS group. Melittin significantly inhibited the expression of caspase and bax protein levels as well as cytochrome c release in vivo. In addition, melittin prevented the activation of the transcription factor nuclear factor-kappa B (NF-κB) induced by GalN/LPS. These results clearly indicate that melittin provided protection against GalN/LPS-induced acute hepatic failure through the inhibition of inflammatory cytokines and apoptosis.


Journal of Ethnopharmacology | 2010

Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-κB-dependent mechanisms.

Hyun-Ji Cho; Yun‑Jeong Jeong; Kwan-Kyu Park; Yoon-Yub Park; Il-Kyung Chung; Kwang-Gill Lee; Joo-Hong Yeo; Sang-Mi Han; Young-Seuk Bae; Young-Chae Chang

ETHNOPHARMACOLOGICAL RELEVANCE Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. AIM OF THE STUDY The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. MATERIAL AND METHODS Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. RESULTS Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. CONCLUSION Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom.


Toxicology and Applied Pharmacology | 2011

Protective effects of melittin on transforming growth factor-β1 injury to hepatocytes via anti-apoptotic mechanism

Woo-Ram Lee; Ji-Hyun Park; Kyung-Hyun Kim; Yoon-Yub Park; Sang-Mi Han; Kwan-Kyu Park

Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-β1-induced apoptosis in hepatocytes. TGF-β1-treated hepatocytes were exposed to low doses (0.5 and 1 μg/mL) and high dose (2 μg/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-β1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-β1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-β1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-β1-mediated injury.


International Journal of Biological Macromolecules | 2011

Characterization of tyrosine-rich Antheraea pernyi silk fibroin hydrolysate

Kwang-Gill Lee; HaeYong Kweon; Joo-Hong Yeo; Soon-Ok Woo; Sang-Mi Han; Jong-Ho Kim

Antheraea pernyi silk fibroin (SF) hydrolysate were characterized using UV-VIS spectrometer, amino acid composition and heavy metal contents to explore its potential sources for food or cosmetic additives. The hydrolyzed A. pernyi SF was separated into two parts: (a) SFA, alanine-rich fraction and (b) SFB, tyrosine-rich fraction. SFB exhibited strong absorption peaks at 210 and 280 nm due to the presence of the tyrosine. Heavy metal analysis showed that arsenic and mercury did not detect. Other heavy metals, which includes lead, cadmium, etc., were recorded only a trace amount. Therefore, A. pernyi SF hydrolysate could be safely used as sources of food, cosmetic and pharmaceuticals.


Vascular Pharmacology | 2015

Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway

Jung-Yeon Kim; Kyung-Hyun Kim; Woo-Ram Lee; Hyun-Jin An; Sun-Jae Lee; Sang-Mi Han; Kwang-Gill Lee; Yoon-Yub Park; Kee-Sik Kim; Young-Soo Lee; Kwan-Kyu Park

The increased proliferation and migration of vascular smooth muscle cells (VSMC) are key process in the development of atherosclerosis lesions. Platelet-derived growth factor (PDGF) initiates a multitude of biological effects that contribute to VSMC proliferation and migration. Apamin, a component of bee venom, has been known to block the Ca(2+)-activated K(+) channels. However, the effects of apamin in the regulation PDGF-BB-induced VSMC proliferation and migration has not been identified. In this study, we investigate the inhibitory effect of apamin on PDGF-BB-induced VSMC proliferation and migration. Apamin suppressed the PDGF-BB-induced VSMC proliferation and migration with no apparent cytotoxic effect. In accordance with these findings, apamin induced the arrest of cell cycle progression at G0/G1 phase. Apamin also decreased the expressions of G0/G1 specific regulatory proteins including proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinases (CDK) 4, cyclin E and CDK2, as well as increased the expression of p21(Cip1) in PDGF-BB-induced VSMC. Moreover, apamin inhibited PDGF-BB-induced phosphorylation of Akt and Erk1/2. These results suggest that apamin plays an important role in prevention of vascular proliferation and migration through the G0/G1 cell cycle arrest by PDGF signaling pathway. Thus, apamin may be a promising candidate for the therapy of atherosclerosis.


Food and Chemical Toxicology | 2012

Melittin has an inhibitory effect on TNF-α-induced migration of human aortic smooth muscle cells by blocking the MMP-9 expression.

Yun-Jeong Jeong; Hyun-Ji Cho; Key Whang; In-Seon Lee; Kwan-Kyu Park; Jung-Yoon Choe; Sang-Mi Han; Cheorl-Ho Kim; Hyeun-Wook Chang; Sung-Kwon Moon; Wun-Jae Kim; Yung Hyun Choi; Young-Chae Chang

Matrix metalloproteinases-9 (MMP-9) plays an important role in the pathogenesis of atherosclerosis and migration of vascular smooth muscle cells (VSMCs) after an arterial injury. In this study, we investigated the potential molecular mechanisms underlying the anti-atheroscleroic effects of melittin, a major component of bee venom, in human aortic smooth muscle cells (HASMCs). Melttin significantly suppressed MMP-9 and MMP-2 secretion, as well as TNF-α-induced MMP-9 expression in the HASMCs. In addition, we found that the inhibitory effects of melittin on TNF-α-induced MMP-9 protein expression are associated with the inhibition of MMP-9 transcription levels. Mechanistically, Melittin suppressed TNF-α-induced MMP-9 activity by inhibiting the phosphorylation of p38 and ERK1/2, but did not affect the phosphorylation of JNK and Akt. Reporter gene and western blotting assays showed that melittin inhibits MMP-9 transcriptional activity by blocking the activation of NF-κB via IκBα signaling pathway. Moreover, the matrigel migration assay showed that melittin reduced TNF-α-induced HASMC migration. These results suggest that melittin suppresses TNF-α-induced HASMC migration through the selective inhibition of MMP-9 expression and provide a novel role of melittin in the anti-atherosclerotic action.


Journal of Plastic Reconstructive and Aesthetic Surgery | 2011

Biological effects of treatment of an animal skin wound with honeybee (Apis melifera. L) venom

Sang-Mi Han; Kwang-Gill Lee; Joo-Hong Yeo; WonTae Kim; Kwan-Kyu Park

BACKGROUND Wound healing is a dynamic and complex process of tissue repair, which involves a number of cellular and molecular events. It progresses from an inflammatory response to re-epithelialisation and, finally, to the formation of a permanent scar. The pharmacological activities of honeybee (Apis mellifera L.) venom (BV) have been used in wound healing for centuries. METHODS To study wound healing, full-thickness skin defects were produced on the dorsal area of mice. We measured the relative sizes and conducted histological assays of the wounds on days 3, 5 and 7. The expressions of transforming growth factor (TGF)-β1, fibronectin, vascular endothelial growth factor (VEGF) and collagen-I mRNA in the wound healing area was measured by reverse transcription polymerase chain reaction (RT-PCR). The amount of TGF-β1, fibronectin, VEGF and collagen-I was determined using immunohistochemical staining. RESULTS The wound sizes were small in the BV group compared with the control and Vaseline groups. The BV group demonstrated decreased TGF-β1, fibronectin and VEGF mRNA levels and increased collagen-I mRNA levels. The expressions of TGF-β1, fibronectin and VEGF proteins were significantly lower in the BV group compared with the control group, while the expression of collagen-I was increased in the BV group as indicated by immunohistochemical staining. CONCLUSION These data suggested that BV had significant wound-healing activity. The results from this study indicated that the effects of BV on wound healing may involve biological mechanisms associated with the expressions of TGF-β1, fibronectin, VEGF and collagen-I.


European Journal of Pharmacology | 2014

Protective effect of melittin against inflammation and apoptosis on Propionibacterium acnes-induced human THP-1 monocytic cell.

Woo-Ram Lee; Kyung-Hyun Kim; Hyun-Jin An; Jung-Yeon Kim; Sang-Mi Han; Kwang-Gil Lee; Kwan-Kyu Park

Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). It has been used in treatment of various chronic inflammatory diseases. However, the cellular mechanism and the anti-apoptotic effect of melittin in Propionibactierium acnes (P. acnes)-induced THP-1 cells have not been explored. In the present study, we investigated the anti-inflammatory and anti-apoptotic mechanism by examining the effect of melittin on P. acnes-induced THP-1 monocytic cells. THP-1 monocytic cells were stimulated by heat-killed P. acnes in the presence of melittin. The expression levels of pro-inflammatory cytokines, NF-κB signaling, caspase family, and PARP signaling were measured by ELISA or Western blot analysis. The number of apoptotic cells and changes of cell morphology were examined using fluorescence microscopy and flow cytometry. Heat-killed P. acnes increased the secretion of pro-inflammatory cytokines and cleavage of caspase-3 and -8 in heat-killed P. acnes-induced THP-1 cells. However, treatment with melittin inhibited the pro-inflammatory cytokines and cleavage of the caspase-3 and -8. Moreover, the cleaved PARP appeared after 8h of heat-killed P. acnes treatment and its cleavage was reduced by melittin treatment. These results demonstrate that 1.0×10(7) CFU/ml of heat-killed P. acnes induces THP-1 cell apoptosis and secretion of inflammatory cytokines. Also, administration of melittin significantly decreases the expression of various inflammatory cytokines in heat-killed P. acnes-treated THP-1 monocytic cells. In particular, melittin exerts anti-apoptotic effects against 1.0×10(7) CFU/ml of heat-killed P. acnes injury to THP-1 cells.


Experimental and Molecular Pathology | 2012

Apamin inhibits THP-1-derived macrophage apoptosis via mitochondria-related apoptotic pathway

Soo-Jung Kim; Ji-Hyun Park; Kyung-Hyun Kim; Woo-Ram Lee; Hyun-Jin An; Bo-Kyung Min; Sang-Mi Han; Kee-Sik Kim; Kwan-Kyu Park

The development of atherosclerotic lesions is mainly due to macrophage death. The oxidative stresses of monocytes/macrophages play a vital role in the initiation and amplification of atherosclerosis. Apamin, a component of bee venom, exerts an anti-inflammatory effect, and selectively inhibits the Ca(2+)-activated K(+) channels. The mechanisms involved in the inhibition of macrophage apoptosis have been fully elucidated. We induced oxidized low-density lipoprotein (oxLDL) in THP-1-derived macrophage and studied the effect of apamin on intercellular lipid levels, mitochondria-related apoptotic pathway and numbers of apoptotic cells. Oil-red O staining indicates that the inhibition of apamin in the condition significantly prevents intracellular lipid deposition. Treatment with apamin significantly decreased the apoptotic macrophages by decreasing the expression of pro-apoptotic genes Bax, caspase-3 and PARP protein levels, as well as through increasing expression of anti-apoptotic genes Bcl-2 and Bcl-xL protein levels in the absence and presence of oxLDL. In vivo, with apamin treatment reduced apoptotic cells death by TUNEL staining. These results indicate that apamin plays an important role in monocyte/macrophage apoptotic processing, which may provide a potential drug for preventing atherosclerosis.


Evidence-based Complementary and Alternative Medicine | 2012

The Protective Effect of Apamin on LPS/Fat-Induced Atherosclerotic Mice

Soo-Jung Kim; Ji-Hyun Park; Kyung-Hyun Kim; Woo-Ram Lee; Sok Cheon Pak; Sang-Mi Han; Kwan-Kyu Park

Apamin, a peptide component of bee venom (BV), has anti-inflammatory properties. However, the molecular mechanisms by which apamin prevents atherosclerosis are not fully understood. We examined the effect of apamin on atherosclerotic mice. Atherosclerotic mice received intraperitoneal (ip) injections of lipopolysaccharide (LPS, 2 mg/kg) to induce atherosclerotic change and were fed an atherogenic diet for 12 weeks. Apamin (0.05 mg/kg) was administered by ip injection. LPS-induced THP-1-derived macrophage inflammation treated with apamin reduced expression of tumor necrosis factor (TNF)-α, vascular cell adhesion molecule (VCAM)-1, and intracellular cell adhesion molecule (ICAM)-1, as well as the nuclear factor kappa B (NF-κB) signaling pathway. Apamin decreased the formation of atherosclerotic lesions as assessed by hematoxylin and elastic staining. Treatment with apamin reduced lipids, Ca2+ levels, and TNF-α in the serum from atherosclerotic mice. Further, apamin significantly attenuated expression of VCAM-1, ICAM-1, TGF-β1, and fibronectin in the descending aorta from atherosclerotic mice. These results indicate that apamin plays an important role in monocyte/macrophage inflammatory processing and may be of potential value for preventing atherosclerosis.

Collaboration


Dive into the Sang-Mi Han's collaboration.

Top Co-Authors

Avatar

Soon-Ok Woo

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwan-Kyu Park

Catholic University of Daegu

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Man-Young Lee

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Myeong-Lyeol Lee

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Soo Choi

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

HaeYong Kweon

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Hye-Kyung Kim

Rural Development Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge