Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sang Ryong Kim is active.

Publication


Featured researches published by Sang Ryong Kim.


The Journal of Neuroscience | 2005

Transient Receptor Potential Vanilloid Subtype 1 Mediates Cell Death of Mesencephalic Dopaminergic Neurons In Vivo and In Vitro

Sang Ryong Kim; Da Y. Lee; Eun Sook Chung; Uh T. Oh; Seung U. Kim; Byung Kwan Jin

Intranigral injection of the transient receptor potential vanilloid subtype 1 (TRPV1; also known as VR1) agonist capsaicin (CAP) into the rat brain, or treatment of rat mesencephalic cultures with CAP, resulted in cell death of dopaminergic (DA) neurons, as visualized by immunocytochemistry. This in vivo and in vitro effect was ameliorated by the TRPV1 antagonist capsazepine (CZP) or iodo-resiniferatoxin, suggesting the direct involvement of TRPV1 in neurotoxicity. In cultures, both CAP and anandamide (AEA), an endogenous ligand for both TRPV1 and cannabinoid type 1 (CB1) receptors, induced degeneration of DA neurons, increases in intracellular Ca2+ ([Ca2+]i), and mitochondrial damage, which were inhibited by CZP, the CB1 antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) or the intracellular Ca2+ chelator BAPTA/AM. We also found that CAP or AEA increased mitochondrial cytochrome c release as well as immunoreactivity to cleaved caspase-3 and that the caspase-3 inhibitor z-Asp-Glu-Val-Asp-fmk protected DA neurons from CAP- or AEA-induced neurotoxicity. Additional studies demonstrated that treatment of mesencephalic cultures with CB1 receptor agonist (6aR)-trans 3-(1,1-dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[b,d] pyran-9-methanol (HU210) also produced degeneration of DA neurons and increases in [Ca2+]i, which were inhibited by AM251 and BAPTA/AM. The CAP-, AEA-, or HU210-induced increases in [Ca2+]i were dependent on extracellular Ca2+, with significantly different patterns of Ca2+ influx. Surprisingly, CZP and AM251 reversed HU210- or CAP-induced neurotoxicity by inhibiting Ca2+ influx, respectively, suggesting the existence of functional cross talk between TRPV1 and CB1 receptors. To our knowledge, this study is the first to demonstrate that the activation of TRPV1 and/or CB1 receptors mediates cell death of DA neurons. Our findings suggest that these two types of receptors, TRPV1 and CB1, may contribute to neurodegeneration in response to endogenous ligands such as AEA.


Journal of Immunology | 2010

Paroxetine Prevents Loss of Nigrostriatal Dopaminergic Neurons by Inhibiting Brain Inflammation and Oxidative Stress in an Experimental Model of Parkinson’s Disease

Young Cheul Chung; Sang Ryong Kim; Byung Kwan Jin

The present study examined whether the antidepressant paroxetine promotes the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. MPTP induced degeneration of nigrostriatal DA neurons and glial activation as visualized by tyrosine hydroxylase, macrophage Ag complex-1, and/or glial fibrillary acidic protein immunoreactivity. Real-time PCR, Western blotting, and immunohistochemistry showed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase and astroglial myeloperoxidase, and subsequent reactive oxygen species production and oxidative DNA damage in the MPTP-treated substantia nigra. Treatment with paroxetine prevented degeneration of nigrostriatal DA neurons, increased striatal dopamine levels, and improved motor function. This neuroprotection afforded by paroxetine was associated with the suppression of astroglial myeloperoxidase expression and/or NADPH oxidase-derived reactive oxygen species production and reduced expression of proinflammatory cytokines, including IL-1β, TNF-α, and inducible NO synthase, by activated microglia. The present findings show that paroxetine may possess anti-inflammatory properties and inhibit glial activation-mediated oxidative stress, suggesting that paroxetine and its analogues may have therapeutic value in the treatment of aspects of Parkinson’s disease related to neuroinflammation.


Neuropharmacology | 2011

Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation

Young Cheul Chung; Sang Ryong Kim; Ju-Young Park; Eun Sook Chung; Keun W. Park; So Y. Won; Eugene Bok; Minyoung Jin; Eun S. Park; Sung-Hwa Yoon; Hyuk Wan Ko; Yoon-Seong Kim; Byung Kwan Jin

Parkinsons disease (PD) is characterized by degeneration of nigrostriatal dopaminergic (DA) neurons. Mice treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) exhibit microglial activation-induced oxidative stress and inflammation, and nigrostriatal DA neuronal damage, and thus serve as an experimental model of PD. Here, we report that fluoxetine, one of the most commonly prescribed antidepressants, prevents MPTP-induced degeneration of nigrostriatal DA neurons and increases striatal dopamine levels with the partial motor recovery. This was accompanied by inhibiting transient expression of proinflammatory cytokines and inducible nitric oxide synthase; and attenuating microglial NADPH oxidase activation, reactive oxygen species/reactive nitrogen species production, and consequent oxidative damage. Interestingly, fluoxetine was found to protect DA neuronal damage from 1-methyl-4-phenyl-pyridinium (MPP(+)) neurotoxicity in co-cultures of mesencephalic neurons and microglia but not in neuron-enriched mesencephalic cultures devoid of microglia. The present in vivo and in vitro findings show that fluoxetine may possess anti-inflammatory properties and inhibit glial activation-mediated oxidative stress. Therefore, we carefully propose that neuroprotection of fluoxetine might be associated with its anti-inflammatory properties and could be employed as novel therapeutic agents for PD and other disorders associated with neuroinflammation and microglia-derived oxidative damage.


The Journal of Neuroscience | 2011

Akt Suppresses Retrograde Degeneration of Dopaminergic Axons by Inhibition of Macroautophagy

Hsiao Chun Cheng; Sang Ryong Kim; Tinmarla F. Oo; Tatyana Kareva; Olga Yarygina; Margarita Rzhetskaya; Chuansong Wang; Matthew J. During; Zsolt Talloczy; Keiji Tanaka; Masaaki Komatsu; Kazuto Kobayashi; Hideyuki Okano; Nikolai Kholodilov; Robert E. Burke

Axon degeneration is a hallmark of neurodegenerative diseases, including Alzheimers disease and Parkinsons disease. Such degeneration is not a passive event but rather an active process mediated by mechanisms that are distinct from the canonical pathways of programmed cell death that mediate destruction of the cell soma. Little is known of the diverse mechanisms involved, particularly those of retrograde axon degeneration. We have previously observed in living animal models of degeneration in the nigrostriatal projection that a constitutively active form of the kinase, myristoylated Akt (Myr-Akt), demonstrates an ability to suppress programmed cell death and preserve the soma of dopamine neurons. Here, we show in both neurotoxin and physical injury (axotomy) models that Myr-Akt is also able to preserve dopaminergic axons due to suppression of acute retrograde axon degeneration. This cellular phenotype is associated with increased mammalian target of rapamycin (mTor) activity and can be recapitulated by a constitutively active form of the small GTPase Rheb, an upstream activator of mTor. Axon degeneration in these models is accompanied by the occurrence of macroautophagy, which is suppressed by Myr-Akt. Conditional deletion of the essential autophagy mediator Atg7 in adult mice also achieves striking axon protection in these acute models of retrograde degeneration. The protection afforded by both Myr-Akt and Atg7 deletion is robust and lasting, because it is still observed as protection of both axons and dopaminergic striatal innervation weeks after injury. We conclude that acute retrograde axon degeneration is regulated by Akt/Rheb/mTor signaling pathways.


Annals of Neurology | 2011

Dopaminergic pathway reconstruction by Akt/Rheb-induced axon regeneration.

Sang Ryong Kim; Xiqun Chen; Tinmarla F. Oo; Tatyana Kareva; Olga Yarygina; Chuansong Wang; Matthew J. During; Nikolai Kholodilov; Robert E. Burke

A prevailing concept in neuroscience has been that the adult mammalian central nervous system is incapable of restorative axon regeneration. Recent evidence, however, has suggested that reactivation of intrinsic cellular programs regulated by protein kinase B (Akt)/mammalian target of rapamycin (mTor) signaling may restore this ability.


Molecular Therapy | 2012

AAV Transduction of Dopamine Neurons With Constitutively Active Rheb Protects From Neurodegeneration and Mediates Axon Regrowth

Sang Ryong Kim; Tatyana Kareva; Olga Yarygina; Nikolai Kholodilov; Robert E. Burke

There are currently no therapies that provide either protection or restoration of neuronal function for adult-onset neurodegenerative diseases such as Parkinsons disease (PD). Many clinical efforts to provide such benefits by infusion of neurotrophic factors have failed, in spite of robust effects in preclinical assessments. One important reason for these failures is the difficulty, due to diffusion limits, of providing these protein molecules in sufficient amounts to the intended cellular targets in the central nervous system. This challenge suggests an alternative approach, that of viral vector transduction to directly activate the intracellular signaling pathways that mediate neurotrophic effects. To this end we have investigated the ability of a constitutively active form of the GTPase Rheb, an important activator of mammalian target of rapamycin (mTor) signaling, to mediate neurotrophic effects in dopamine neurons of the substantia nigra (SN), a population of neurons affected in PD. We find that constitutively active hRheb(S16H) induces many neurotrophic effects in mice, including abilities to both preserve and restore the nigrostriatal dopaminergic axonal projections in a highly destructive neurotoxin model. We conclude that direct viral vector transduction of vulnerable neuronal populations to activate intracellular neurotrophic signaling pathways offers promise for the treatment of neurodegenerative disease.


Journal of Immunology | 2011

Cannabinoid Receptor Type 1 Protects Nigrostriatal Dopaminergic Neurons against MPTP Neurotoxicity by Inhibiting Microglial Activation

Young Cheul Chung; Eugene Bok; Sue H. Huh; Sung-Hwa Yoon; Sang Ryong Kim; Yoon-Seong Kim; Sungho Maeng; Sung-Hyun Park; Byung Kwan Jin

This study examined whether the cannabinoid receptor type 1 (CB1) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons. Conversely, treatment with nonselective cannabinoid receptor agonists (WIN55,212-2 and HU210) led to increased survival of DA neurons in the SN, their fibers and dopamine levels in the striatum, and improved motor function. This neuroprotection by cannabinoids was accompanied by suppression of NADPH oxidase reactive oxygen species production and reduced expression of proinflammatory cytokines from activated microglia. Interestingly, cannabinoids protected DA neurons against 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia, but not in neuron-enriched mesencephalic cultures devoid of microglia. The observed neuroprotection and inhibition of microglial activation were reversed upon treatment with CB1 receptor selective antagonists AM251 and/or SR14,716A, confirming the involvement of the CB1 receptor. The present in vivo and in vitro findings clearly indicate that the CB1 receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress. Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson’s disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage.


Journal of Nutritional Biochemistry | 2014

Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson's disease

Eunju Leem; Jin Han Nam; Min-Tae Jeon; Won-Ho Shin; So-Yoon Won; Sang-Joon Park; Myung-Sook Choi; Byung Kwan Jin; Un Ju Jung; Sang Ryong Kim

This study investigated the effect of naringin, a major flavonoid in grapefruit and citrus fruits, on the degeneration of the nigrostriatal dopaminergic (DA) projection in a neurotoxin model of Parkinsons disease (PD) in vivo and the potential underlying mechanisms focusing on the induction of glia-derived neurotrophic factor (GDNF), well known as an important neurotrophic factor involved in the survival of adult DA neurons. 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the medial forebrain bundle of rat brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. To ascertain whether naringin-induced GDNF contributes to neuroprotection, we further investigated the effects of intranigral injection of neutralizing antibodies against GDNF in the MPP(+) rat model of PD. Our observations demonstrate that naringin could increase the level of GDNF in DA neurons, contributing to neuroprotection in the MPP(+) rat model of PD, with activation of mammalian target of rapamycin complex 1. Moreover, naringin could attenuate the level of tumor necrosis factor-α in microglia increased by MPP(+)-induced neurotoxicity in the substantia nigra. These results indicate that naringin could impart to DA neurons the important ability to produce GDNF as a therapeutic agent against PD with anti-inflammatory effects, suggesting that naringin is a beneficial natural product for the prevention of DA degeneration in the adult brain.


Molecular Nutrition & Food Research | 2013

Modulation of lipid metabolism by polyphenol-rich grape skin extract improves liver steatosis and adiposity in high fat fed mice

Hae-Jin Park; Un Ju Jung; Mi-Kyung Lee; Su-Jung Cho; Hee-Kyoung Jung; Joo Heon Hong; Yong Bok Park; Sang Ryong Kim; Sangphil Shim; Jieun Jung; Myung-Sook Choi

This study investigated the influence of polyphenol-rich grape skin extract (GSE) on adiposity and hepatic steatosis in mice fed a high fat diet (HFD) and its underlying mechanisms based on adipose and hepatic lipid metabolism. C57BL/6J mice were fed a normal diet or a HFD (20% fat, w/w) with or without GSE (0.15%, w/w) for 10 weeks. The supplementation of GSE significantly lowered body weight, fat weight, plasma free fatty acid level, and hepatic lipid accumulation compared to the HFD group. Plasma leptin level was significantly lower, while the plasma adiponectin level was higher in the GSE group than in the HFD group. GSE supplementation significantly suppressed the activities of lipogenic enzymes in both adipose and liver tissues, which was concomitant with β-oxidation activation. Furthermore, GSE reversed the HFD-induced changes of the expression of genes involved in lipogenesis and β-oxidation in the liver. These findings suggest that GSE may protect against diet-induced adiposity and hepatic steatosis by regulating mRNA expression and/or activities of enzymes that regulate lipogenesis and fatty acid oxidation in the adipose tissue and liver.


World Journal of Gastroenterology | 2013

Garcinia Cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation.

Young-Je Kim; Myung-Sook Choi; Yong Bok Park; Sang Ryong Kim; Mi-Kyung Lee; Un Ju Jung

AIM To investigate long-term effects of Garcinia Cambogia (GC), weight-loss supplement, on adiposity and non-alcoholic fatty liver disease in obese mice. METHODS Obesity-prone C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without GC (1%, w/w) for 16 wk. The HFD contained 45 kcal% fat, 20 kcal% protein and 35 kcal% carbohydrate. They were given free access to food and distilled water, and food consumption and body weight were measured daily and weekly, respectively. Data were expressed as the mean ± SE. Statistical analyses were performed using the statistical package for the social science software program. Students t test was used to assess the differences between the groups. Statistical significance was considered at P < 0.05. RESULTS There were no significant changes in body weight and food intake between the groups. However, the supplementation of GC significantly lowered visceral fat accumulation and adipocyte size via inhibition of fatty acid synthase activity and its mRNA expression in visceral adipose tissue, along with enhanced enzymatic activity and gene expression involved in adipose fatty acid β-oxidation. Moreover, GC supplementation resulted in significant reductions in glucose intolerance and the plasma resistin level in the HFD-fed mice. However, we first demonstrated that it increased hepatic collagen accumulation, lipid peroxidation and mRNA levels of genes related to oxidative stress (superoxide dismutase and glutathione peroxidase) and inflammatory responses (tumor necrosis factor-α and monocyte chemoattractant protein-1) as well as plasma alanine transaminase and aspartate transaminase levels, although HFD-induced hepatic steatosis was not altered. CONCLUSION GC protects against HFD-induced obesity by modulating adipose fatty acid synthesis and β-oxidation but induces hepatic fibrosis, inflammation and oxidative stress.

Collaboration


Dive into the Sang Ryong Kim's collaboration.

Top Co-Authors

Avatar

Un Ju Jung

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myung-Sook Choi

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Kyoung Hoon Jeong

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Bok Park

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge