Sang-Wook Cha
Cincinnati Children's Hospital Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sang-Wook Cha.
Development | 2008
Sang-Wook Cha; Emmanuel Tadjuidje; Qinghua Tao; Christopher Wylie; Janet Heasman
Wnt signaling in development and adult tissue homeostasis requires tight regulation to prevent patterning abnormalities and tumor formation. Here, we show that the maternal Wnt antagonist Dkk1 downregulates both the canonical and non-canonical signaling that are required for the correct establishment of the axes of the Xenopus embryo. We find that the target Wnts of Dkk activity are maternal Wnt5a and Wnt11, and that both Wnts are essential for canonical and non-canonical signaling. We determine that Wnt5a and Wnt11 form a previously unrecognized complex. This work suggests a new aspect of Wnt signaling: two Wnts acting in a complex together to regulate embryonic patterning.
Developmental Cell | 2010
Shelby A. Blythe; Sang-Wook Cha; Emmanuel Tadjuidje; Janet Heasman; Peter S. Klein
An emerging concept in development is that transcriptional poising presets patterns of gene expression in a manner that reflects a cells developmental potential. However, it is not known how certain loci are specified in the embryo to establish poised chromatin architecture as the developmental program unfolds. We find that, in the context of transcriptional quiescence prior to the midblastula transition in Xenopus, dorsal specification by the Wnt/beta-catenin pathway is temporally uncoupled from the onset of dorsal target gene expression, and that beta-catenin establishes poised chromatin architecture at target promoters. beta-catenin recruits the arginine methyltransferase Prmt2 to target promoters, thereby establishing asymmetrically dimethylated H3 arginine 8 (R8). Recruitment of Prmt2 to beta-catenin target genes is necessary and sufficient to establish the dorsal developmental program, indicating that Prmt2-mediated histone H3(R8) methylation plays a critical role downstream of beta-catenin in establishing poised chromatin architecture and marking key organizer genes for later expression.
Current Biology | 2009
Sang-Wook Cha; Emmanuel Tadjuidje; Jody A. White; James A. Wells; Christopher N. Mayhew; Christopher Wylie; Janet Heasman
Wnt signaling plays important roles in embryonic development, tissue differentiation, and cancer. In both normal and malignant tissue, Wnt family members are often expressed combinatorially, although the significance of this is not understood. We recently showed that Wnt11 and Wnt5a are both required for the initiation of embryonic axis formation and that the two proteins physically interact with each other. However, little is known about the mechanism or biological significance of Wnt-Wnt protein interaction. Here we show in three assays, with Xenopus oocytes, mouse L cells, and human embryonic stem cells, that secreted Xenopus Wnt11/5a complexes have more canonical Wnt signaling activity than secreted Wnt11 or Wnt5a acting alone. We demonstrate that the sulfation activity of tyrosylprotein sulfotransferase-1 (TPST-1) is required for Xenopus dorsal axis formation and that O-sulfation of specific tyrosine residues is necessary for the interaction of Wnt11 with Wnt5a and for enhanced canonical signaling activity. These findings demonstrate a novel aspect of Wnt biology-Wnt family member interaction that depends on tyrosyl sulfation.
Development | 2011
Sang-Wook Cha; Emmanuel Tadjuidje; Christopher Wylie; Janet Heasman
The Xenopus oocyte contains components of both the planar cell polarity and apical-basal polarity pathways, but their roles are not known. Here, we examine the distribution, interactions and functions of the maternal planar cell polarity core protein Vangl2 and the apical-basal complex component aPKC. We show that Vangl2 is distributed in animally enriched islands in the subcortical cytoplasm in full-grown oocytes, where it interacts with a post-Golgi v-SNARE protein, VAMP1, and acetylated microtubules. We find that Vangl2 is required for the stability of VAMP1 as well as for the maintenance of the stable microtubule architecture of the oocyte. We show that Vangl2 interacts with atypical PKC, and that both the acetylated microtubule cytoskeleton and the Vangl2-VAMP1 distribution are dependent on the presence of aPKC. We also demonstrate that aPKC and Vangl2 are required for the cell membrane asymmetry that is established during oocyte maturation, and for the asymmetrical distribution of maternal transcripts for the germ layer and dorsal/ventral determinants VegT and Wnt11. This study demonstrates the interaction and interdependence of Vangl2, VAMP1, aPKC and the stable microtubule cytoskeleton in the oocyte, shows that maternal Vangl2 and aPKC are required for specific oocyte asymmetries and vertebrate embryonic patterning, and points to the usefulness of the oocyte as a model to study the polarity problem.
PLOS ONE | 2012
Sang-Wook Cha; Meredith McAdams; Jay Kormish; Christopher Wylie; Matthew Kofron
Foxi1e is a zygotic transcription factor that is essential for the expression of early ectodermal genes. It is expressed in a highly specific pattern, only in the deep cell layers of the animal hemisphere, and in a mosaic pattern in which expressing cells are interspersed with non-expressing cells. Previous work has shown that several signals in the blastula control this expression pattern, including nodals, the TGFβ family member Vg1, and Notch. However, these are all inhibitory, which raises the question of what activates Foxi1e. In this work, we show that a related Forkhead family protein, Foxi2, is a maternal activator of Foxi1e. Foxi2 mRNA is maternally encoded, and highly enriched in animal hemisphere cells of the blastula. ChIP assays show that it acts directly on upstream regulatory elements of Foxi1e. Its effect is specific, since animal cells depleted of Foxi2 are able to respond normally to mesoderm inducing signals from vegetal cells. Foxi2 thus acts as a link between the oocyte and the early pathway to ectoderm, in a similar fashion to the vegetally localized VegT acts to initiate endoderm and mesoderm formation.
Developmental Dynamics | 2009
Mark W. Kennedy; Sang-Wook Cha; Emmanuel Tadjuidje; Phillip G. Andrews; Janet Heasman; Kenneth R. Kao
The Wnt/β‐catenin transcriptional activation complex requires the adapter protein Pygopus (Pygo), which links the basal transcription machinery to β‐catenin, by its association with legless (Lgs)/ B‐cell lymphoma‐9 (Bcl9). Pygo was shown to be required for development in vertebrates, but the role of Lgs/Bcl9 is unknown. We identified an amphibian orthologue of Lgs/Bcl9, XBcl9, which interacted biochemically with Xβ‐catenin and XPygo2. The body axis promoting ability of Xβ‐catenin was diminished when residues required for its interaction with XBcl9 were mutated. In blastula embryos, XBcl9 was transiently preferentially expressed in nuclei of dorsoanterior cells and ectopically expressed XBcl9 required XPygo2 to localize to nuclei. Furthermore, while neither XBcl9 nor XPygo2 alone affected development when ectopically expressed, both were required to induce supernumerary axis and dorsal gene activation. Like XPygo2, depletion of maternal XBcl9 alone caused dorsal defects. These results indicated an essential role of the Pygo‐Bcl9 duet in vertebrate body axis formation. Developmental Dynamics 239:271–283, 2010.
Developmental Dynamics | 2011
Emmanuel Tadjuidje; Sang-Wook Cha; Mariana Louza; Christopher Wylie; Janet Heasman
Of the three Dishevelled (Dvl) genes, only Dvl2 and Dvl3 are maternally encoded in the frog, Xenopus laevis. We show here by loss of function analysis that single depletion of either Dvl2 or Dvl3 from the oocyte causes the same embryonic phenotype. We find that the effects of loss of function of Dvl2 and 3 together are additive, and that the proteins physically interact, suggesting that both are required in the same complex. We show that maternal Dvl2 and 3 are required for convergence extension movements downstream of the dorsally localized signaling pathway activated by Xnr3, but not downstream of the pathway activated by activin. Also, depletion of maternal Dvl2 and 3 mRNAs causes the up‐regulation of a subset of zygotic ectodermal genes, including Foxi1e, with surprisingly no significant effect on the canonical Wnt direct target genes Siamois and Xnr3. We suggest that the likely reason for continued expression of the Wnt target genes in Dvl2/3‐depleted embryos is that maternal Dvl mRNA depletion is insufficient to deplete stored punctae of Dvl protein in the oocyte cortex, which may transduce dorsal signaling after fertilization. Developmental Dynamics 240:1727–1736, 2011.
Development | 2017
Yetki Aslan; Emmanuel Tadjuidje; Aaron M. Zorn; Sang-Wook Cha
The revolution in CRISPR-mediated genome editing has enabled the mutation and insertion of virtually any DNA sequence, particularly in cell culture where selection can be used to recover relatively rare homologous recombination events. The efficient use of this technology in animal models still presents a number of challenges, including the time to establish mutant lines, mosaic gene editing in founder animals, and low homologous recombination rates. Here we report a method for CRISPR-mediated genome editing in Xenopus oocytes with homology-directed repair (HDR) that provides efficient non-mosaic targeted insertion of small DNA fragments (40-50 nucleotides) in 4.4-25.7% of F0 tadpoles, with germline transmission. For both CRISPR/Cas9-mediated HDR gene editing and indel mutation, the gene-edited F0 embryos are uniformly heterozygous, consistent with a mutation in only the maternal genome. In addition to efficient tagging of proteins in vivo, this HDR methodology will allow researchers to create patient-specific mutations for human disease modeling in Xenopus. Summary: Genome editing in Xenopus oocytes employing homology-directed repair and DNA ligase inhibition effciently generates non-mosaic mutations with germline transmission.
PLOS ONE | 2012
Sumeda Nandadasa; Qinghua Tao; Amanda Shoemaker; Sang-Wook Cha; Christopher Wylie
Alpha (α)-E-catenin is a component of the cadherin complex, and has long been thought to provide a link between cell surface cadherins and the actin skeleton. More recently, it has also been implicated in mechano-sensing, and in the control of tissue size. Here we use the early Xenopus embryos to explore functional differences between two α-catenin family members, α-E- and α-N-catenin, and their interactions with the different classical cadherins that appear as tissues of the embryo become segregated from each other. We show that they play both cadherin-specific and context-specific roles in the emerging tissues of the embryo. α-E-catenin interacts with both C- and E-cadherin. It is specifically required for junctional localization of C-cadherin, but not of E-cadherin or N-cadherin at the neurula stage. α-N-cadherin interacts only with, and is specifically required for junctional localization of, N-cadherin. In addition, α -E-catenin is essential for normal tissue size control in the non-neural ectoderm, but not in the neural ectoderm or the blastula. We also show context specificity in cadherin/ α-catenin interactions. E-cadherin requires α-E-catenin for junctional localization in some tissues, but not in others, during early development. These specific functional cadherin/alpha-catenin interactions may explain the basis of cadherin specificity of actin assembly and morphogenetic movements seen previously in the neural and non-neural ectoderm.
Methods | 2010
Sang-Wook Cha; Janet Heasman
Xenopus oocytes have been widely used as a simple protein expression system particularly for the characterization of ion channels and membrane receptors. However, less attention has been given to their use as a means of synthesizing and analyzing secreted signaling molecules. In this review, we describe two assays that address this use of Xenopus oocytes. In the first, the paracrine assay, the oocytes secrete the signal and juxtaposed animal cap explants receive it. This provides an easy and efficient way to manipulate the signaling source since different doses of mRNA for the secreted ligand can be injected into the oocyte. Also the signaling response in the receiving cells can be read in several ways: in vivo by monitoring the localization of GFP-tagged signaling mediators, after fixation by immunostaining, or by monitoring changes in the transcriptional readout by RT-PCR. In a second approach, the oocyte is used to secrete a ligand, here the Wnt family members Wnt5a and 11, into the surrounding medium. This conditioned medium is then used to treat other cell lines to monitor their physiological changes in response to various combinations of Wnt proteins. Only a few recombinant Wnt proteins are commercially available and these are predominantly of mouse origin. Since Xenopus oocytes translate foreign RNA efficiently, this method provides an alternative source of Wnt protein derived from other model species.