Sangam L. Dwivedi
International Crops Research Institute for the Semi-Arid Tropics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sangam L. Dwivedi.
Plant Genetic Resources | 2006
H. D. Upadhyaya; Bonnie J Furman; Sangam L. Dwivedi; Sripada M. Udupa; C. L. L. Gowda; Michael Baum; Jonathan H. Crouch; Hutokshi K. Buhariwalla; Sube Singh
Chickpea is one of the most important grain legume crops in the world. Large collections of genetic resources are maintained in the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and International Center for Agricultural Research in the Dry Areas (ICARDA) genebanks. Association mapping using neutral markers has been suggested as a means to identify useful alleles in the vast reservoirs of genetic diversity existing in the germplasm collections that could be associated with the phenotypes among the population individuals. ICRISAT in collaboration with ICARDA developed a global composite collection of 3000 accessions that will be profiled using 50 polymorphic simple sequence repeat (SSR) markers. The data generated through this collaborative effort will be used to define the genetic structure of the global composite collection and to select a reference sample of 300 accessions representing the maximum diversity for the isolation of allelic variants of candidate gene associated with beneficial traits. It is then expected that molecular biologists and plant breeders will have opportunities to use diverse lines in functional and comparative genomics, in mapping and cloning gene(s), and in applied plant breeding to diversify the genetic base of the breeding populations which should lead to the development of broad-based elite breeding lines/cultivars with superior yield and enhanced adaptation to diverse environments.
BMC Plant Biology | 2010
Ravi Koppolu; Hari D. Upadhyaya; Sangam L. Dwivedi; David A. Hoisington; Rajeev K. Varshney
BackgroundThe genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis.ResultsThe average transferability rate of 101 SSR markers tested to section Arachis and six other sections was 81% and 59% respectively. Five markers (IPAHM 164, IPAHM 165, IPAHM 407a, IPAHM 409, and IPAHM 659) showed 100% transferability. Cluster analysis of allelic data from a subset of 32 SSR markers on 85 wild and 11 cultivated accessions grouped accessions according to their genome composition, sections and species to which they belong. A total of 109 species specific alleles were detected in different wild species, Arachis pusilla exhibited largest number of species specific alleles (15). Based on genetic distance analysis, the A-genome accession ICG 8200 (A. duranensis) and the B-genome accession ICG 8206 (A. ipaënsis) were found most closely related to A. hypogaea.ConclusionA set of cross species and cross section transferable SSR markers has been identified that will be useful for genetic studies of wild species of Arachis, including comparative genome mapping, germplasm analysis, population genetic structure and phylogenetic inferences among species. The present study provides strong support based on both genomic and genic markers, probably for the first time, on relationships of A. monticola and A. hypogaea as well as on the most probable donor of A and B-genomes of cultivated groundnut.
Biotechnology Advances | 2015
Sangam L. Dwivedi; Anne B. Britt; Leena Tripathi; Shivali Sharma; Hari D. Upadhyaya; Rodomiro Ortiz
The discovery of haploids in higher plants led to the use of doubled haploid (DH) technology in plant breeding. This article provides the state of the art on DH technology including the induction and identification of haploids, what factors influence haploid induction, molecular basis of microspore embryogenesis, the genetics underpinnings of haploid induction and its use in plant breeding, particularly to fix traits and unlock genetic variation. Both in vitro and in vivo methods have been used to induce haploids that are thereafter chromosome doubled to produce DH. Various heritable factors contribute to the successful induction of haploids, whose genetics is that of a quantitative trait. Genomic regions associated with in vitro and in vivo DH production were noted in various crops with the aid of DNA markers. It seems that F2 plants are the most suitable for the induction of DH lines than F1 plants. Identifying putative haploids is a key issue in haploid breeding. DH technology in Brassicas and cereals, such as barley, maize, rice, rye and wheat, has been improved and used routinely in cultivar development, while in other food staples such as pulses and root crops the technology has not reached to the stage leading to its application in plant breeding. The centromere-mediated haploid induction system has been used in Arabidopsis, but not yet in crops. Most food staples are derived from genomic resources-rich crops, including those with sequenced reference genomes. The integration of genomic resources with DH technology provides new opportunities for the improving selection methods, maximizing selection gains and accelerate cultivar development. Marker-aided breeding and DH technology have been used to improve host plant resistance in barley, rice, and wheat. Multinational seed companies are using DH technology in large-scale production of inbred lines for further development of hybrid cultivars, particularly in maize. The public sector provides support to national programs or small-medium private seed for the exploitation of DH technology in plant breeding.
Trends in Plant Science | 2016
Sangam L. Dwivedi; Salvatore Ceccarelli; Matthew W. Blair; Hari D. Upadhyaya; Ashok Kumar Are; Rodomiro Ortiz
Plant landraces represent heterogeneous, local adaptations of domesticated species, and thereby provide genetic resources that meet current and new challenges for farming in stressful environments. These local ecotypes can show variable phenology and low-to-moderate edible yield, but are often highly nutritious. The main contributions of landraces to plant breeding have been traits for more efficient nutrient uptake and utilization, as well as useful genes for adaptation to stressful environments such as water stress, salinity, and high temperatures. We propose that a systematic landrace evaluation may define patterns of diversity, which will facilitate identifying alleles for enhancing yield and abiotic stress adaptation, thus raising the productivity and stability of staple crops in vulnerable environments.
Euphytica | 2002
Sangam L. Dwivedi; S. Pande; Joginedi Narayan Rao; S. N. Nigam
Late leaf spot (LLS) and rust cause substantial yield losses and reduce the fodder and seed quality in groundnut (Arachis hypogaea L.). Adoption of resistant cultivars by the semi-arid tropic farmers is the best option to overcome yield losses. Knowledge on components of resistance to these diseases should facilitate the development of groundnut cultivars with enhanced resistance to LLS and rust. The objectives of the experiments were to study the genetic variability and relationships among components of resistance to LLS and rust, and assess their significance in disease resistance breeding. Fifteen interspecific derivatives for LLS and 14 for rust and a susceptible control, TMV 2, were evaluated in a randomised complete block design with two or three replications under greenhouse conditions. The experiments were repeated twice. Genotypic differences were highly significant for all the traits studied. Resistance to LLS is due to longer incubation and latent periods, lesser lesions per leaf, smaller lesion diameter, lower sporulation index, and lesser leaf area damage and disease score. Selection based on components of resistance to LLS may not lead to plants with higher retained green leaf area. The remaining green leaf area on the plant should, therefore, be the major selection criteria for resistance to LLS in breeding programs. Resistance to rust is due to longer incubation and latent periods, fewer pustules per leaf, smaller pustule diameter, lower sporulation index, and lesser leaf area damage and disease score. Rust resistant components appear to work additively, therefore, selection based on resistance components together with green leaf area retained on the plant should be the basis of selecting for resistance to rust in breeding programs. ICGV 99005, 99003, 99012, and 99015 for rust and ICGV 99006, 99013, 99004, 99003, and 99001 for LLS are the better parents for use in resistance breeding programs.
Genetic Resources and Crop Evolution | 2005
Sangam L. Dwivedi; Hari D. Upadhyaya; Dattatray Mahabaleshwar Hegde
Safflower (Carthamus tinctorius L.) ranks eighth among the major oilseeds crop grown worldwide. The leaves, flower, and seeds have medicinal and industrial significance. Its seed has the best quality of edible oil. The development of a core collection could facilitate easier access to safflower genetic resources for their use in crop-improvement programs and simplify the genebank management. The present study was initiated to develop a core subset of safflower based on 12 morphological descriptors and geographic information on 5522 safflower accessions. The accessions were stratified by country of origin, and data on 12 descriptors were used for clustering following Ward’s method. About 10% of the accessions were randomly selected from each of the 25 clusters to constitute a core subset of 570 accessions. Mean comparisons using t-test, frequency distribution using χ2-test, and Shannon-Weaver diversity index of 12 descriptors indicated that the genetic variation available for these traits in the entire collection has been preserved in the core subset. There was a fair degree of similarity in phenotypic correlation coefficients among traits in the entire collection and core subset, suggesting that this core subset has preserved most of the co-adapted gene complexes controlling these associations. This core subset, provides an opportunity to evaluate agronomic and seed quality traits and resistance to abiotic and biotic stresses to identify diverse germplasm with beneficial traits for enhancing the genetic potential of safflower.
Euphytica | 2009
H. D. Upadhyaya; L. J. Reddy; Sangam L. Dwivedi; C. L. L. Gowda; Sube Singh
Tolerance to low temperature is an important prerequisite for optimal performance of peanut (Arachis hypogaea L.) in a number of temperate peanut-growing environments. One hundred fifty-eight peanut accessions belonging to five botanical types, known to be tolerant to low temperature (12°C) at germination, were evaluated for phenotypic diversity for 15 morphological traits in the 2001 rainy season and for 15 agronomic and two seed quality traits in the 2001 rainy and 2001/2002 post-rainy seasons. Analysis of data, using the residual maximum-likelihood approach indicated that variance components due to genotypes were significant for all traits in the rainy and for all but two traits in the post-rainy season. Clustering based on scores of nine principle components delineated four clusters. The cold-tolerant genotypes and the standard control cultivars in the four clusters differed in mean, variance, and range both during rainy and post-rainy seasons for a range of agronomic traits, indicating the diversity among the clusters. The cold-tolerant accessions were superior to control cultivars for several agronomic traits compared with their respective controls in both the rainy and post-rainy seasons, so their use in breeding should result in genetically diverse cold-tolerant high-yielding peanut cultivars.
The Plant Genome | 2013
C. L. Laxmipathi Gowda; Hari D. Upadhyaya; Shivali Sharma; Rajeev K. Varshney; Sangam L. Dwivedi
Both chickpea (Cicer arietinum L.) and pigeonpea [Cajanus cajan (L.) Millsp.] are important dietary source of protein while groundnut (Arachis hypogaea L.) is one of the major oil crops. Globally, approximately 1.1 million grain legume accessions are conserved in genebanks, of which the ICRISAT genebank holds 49,485 accessions of cultivated species and wild relatives of chickpea, pigeonpea, and groundnut from 133 countries. These genetic resources are reservoirs of many useful genes for present and future crop improvement programs. Representative subsets in the form of core and mini core collections have been used to identify trait‐specific genetically diverse germplasm for use in breeding and genomic studies in these crops. Chickpea, groundnut, and pigeonpea have moved from “orphan” to “genomic resources rich crops.” The chickpea and pigeonpea genomes have been decoded, and the sequences of groundnut genome will soon be available. With the availability of these genomic resources, the germplasm curators, breeders, and molecular biologists will have abundant opportunities to enhance the efficiency of genebank operations, mine allelic variations in germplasm collection, identify genetically diverse germplasm with beneficial traits, broaden the cultigens genepool, and accelerate the cultivar development to address new challenges to production, particularly with respect to climate change and variability. Marker‐assisted breeding approaches have already been initiated for some traits in chickpea and groundnut, which should lead to enhanced efficiency and efficacy of crop improvement. Resistance to some pests and diseases has been successfully transferred from wild relatives to cultivated species.
Sexual Plant Reproduction | 2010
Sangam L. Dwivedi; Enrico Perotti; Hari D. Upadhyaya; Rodomiro Ortiz
Arabidopsis, Mimulus and tomato have emerged as model plants in researching genetic and molecular basis of differences in mating systems. Variations in floral traits and loss of self-incompatibility have been associated with mating system differences in crops. Genomics research has advanced considerably, both in model and crop plants, which may provide opportunities to modify breeding systems as evidenced in Arabidopsis and tomato. Mating system, however, not recombination per se, has greater effect on the level of polymorphism. Generating targeted recombination remains one of the most important factors for crop genetic enhancement. Asexual reproduction through seeds or apomixis, by producing maternal clones, presents a tremendous potential for agriculture. Although believed to be under simple genetic control, recent research has revealed that apomixis results as a consequence of the deregulation of the timing of sexual events rather than being the product of specific apomixis genes. Further, forward genetic studies in Arabidopsis have permitted the isolation of novel genes reported to control meiosis I and II entry. Mutations in these genes trigger the production of unreduced or apomeiotic megagametes and are an important step toward understanding and engineering apomixis.
Euphytica | 1982
S. N. Nigam; P. T. C. Nambiar; Sangam L. Dwivedi; R. W. Gibbons; P. J. Dart
SummaryGenetic studies of nonnodulation in groundnut were carried out in a cross, NC 17×PI 259747, with a single Rhizobium strain, NC 92, and a native Rhizobium population.The normal nodulation of the parents, F1 generations and backcross progenies, and the F2 segregation for nodulation and nonnodulation confirmed that nonnodulation in groundnut is controlled by two duplicate recessive genes.
Collaboration
Dive into the Sangam L. Dwivedi's collaboration.
International Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputs