Sangeeta Dhawan
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sangeeta Dhawan.
Diabetes | 2009
Shuen-Ing Tschen; Sangeeta Dhawan; Tatyana Gurlo; Anil Bhushan
OBJECTIVE The aim of this study was to elucidate whether age plays a role in the expansion or regeneration of β-cell mass. RESEARCH DESIGN AND METHODS We analyzed the capacity of β-cell expansion in 1.5- and 8-month-old mice in response to a high-fat diet, after short-term treatment with the glucagon-like peptide 1 (GLP-1) analog exendin-4, or after streptozotocin (STZ) administration. RESULTS Young mice responded to high-fat diet by increasing β-cell mass and β-cell proliferation and maintaining normoglycemia. Old mice, by contrast, did not display any increases in β-cell mass or β-cell proliferation in response to high-fat diet and became diabetic. To further assess the plasticity of β-cell mass with respect to age, young and old mice were injected with a single dose of STZ, and β-cell proliferation was analyzed to assess the regeneration of β-cells. We observed a fourfold increase in β-cell proliferation in young mice after STZ administration, whereas no changes in β-cell proliferation were observed in older mice. The capacity to expand β-cell mass in response to short-term treatment with the GLP-1 analog exendin-4 also declined with age. The ability of β-cell mass to expand was correlated with higher levels of Bmi1, a polycomb group protein that is known to regulate the Ink4a locus, and decreased levels of p16Ink4aexpression in the β-cells. Young Bmi1−/− mice that prematurely upregulate p16Ink4afailed to expand β-cell mass in response to exendin-4, indicating that p16Ink4alevels are a critical determinant of β-cell mass expansion. CONCLUSIONS β-Cell proliferation and the capacity of β-cells to regenerate declines with age and is regulated by the Bmi1/p16Ink4apathway.
Genes & Development | 2009
Sangeeta Dhawan; Shuen-Ing Tschen; Anil Bhushan
The molecular mechanisms that regulate the age-induced increase of p16(INK4a) expression associated with decreased beta-cell proliferation and regeneration are not well understood. We report that in aged islets, derepression of the Ink4a/Arf locus is associated with decreased Bmi-1 binding, loss of H2A ubiquitylation, increased MLL1 recruitment, and a concomitant increase in H3K4 trimethylation. During beta-cell regeneration these histone modifications are reversed resulting in reduced p16(INK4a) expression and increased proliferation. We suggest that PcG and TrxG proteins impart a combinatorial code of histone modifications on the Ink4a/Arf locus to control beta-cell proliferation during aging and regeneration.
Developmental Cell | 2011
Sangeeta Dhawan; Senta Georgia; Shuen-Ing Tschen; Guoping Fan; Anil Bhushan
Adult pancreatic β cells can replicate during growth and after injury to maintain glucose homeostasis. Here, we report that β cells deficient in Dnmt1, an enzyme that propagates DNA methylation patterns during cell division, were converted to α cells. We identified the lineage determination gene aristaless-related homeobox (Arx), as methylated and repressed in β cells, and hypomethylated and expressed in α cells and Dnmt1-deficient β cells. We show that the methylated region of the Arx locus in β cells was bound by methyl-binding protein MeCP2, which recruited PRMT6, an enzyme that methylates histone H3R2 resulting in repression of Arx. This suggests that propagation of DNA methylation during cell division also ensures recruitment of enzymatic machinery capable of modifying and transmitting histone marks. Our results reveal that propagation of DNA methylation during cell division is essential for repression of α cell lineage determination genes to maintain pancreatic β cell identity.
Genes & Development | 2011
James B. Papizan; Ruth A. Singer; Shuen-Ing Tschen; Sangeeta Dhawan; Jessica M. Friel; Susan B. Hipkens; Mark A. Magnuson; Anil Bhushan; Lori Sussel
Regulation of cell differentiation programs requires complex interactions between transcriptional and epigenetic networks. Elucidating the principal molecular events responsible for the establishment and maintenance of cell fate identities will provide important insights into how cell lineages are specified and maintained and will improve our ability to recapitulate cell differentiation events in vitro. In this study, we demonstrate that Nkx2.2 is part of a large repression complex in pancreatic β cells that includes DNMT3a, Grg3, and HDAC1. Mutation of the endogenous Nkx2.2 tinman (TN) domain in mice abolishes the interaction between Nkx2.2 and Grg3 and disrupts β-cell specification. Furthermore, we demonstrate that Nkx2.2 preferentially recruits Grg3 and HDAC1 to the methylated Aristaless homeobox gene (Arx) promoter in β cells. The Nkx2.2 TN mutation results in ectopic expression of Arx in β cells, causing β-to-α-cell transdifferentiation. A corresponding β-cell-specific deletion of DNMT3a is also sufficient to cause Arx-dependent β-to-α-cell reprogramming. Notably, subsequent removal of Arx in the β cells of Nkx2.2(TNmut/TNmut) mutant mice reverts the β-to-α-cell conversion, indicating that the repressor activities of Nkx2.2 on the methylated Arx promoter in β cells are the primary regulatory events required for maintaining β-cell identity.
Journal of Clinical Investigation | 2015
Sangeeta Dhawan; Shuen ing Tschen; Chun Zeng; Tingxia Guo; Matthias Hebrok; Aleksey V. Matveyenko; Anil Bhushan
Pancreatic β cells secrete insulin in response to postprandial increases in glucose levels to prevent hyperglycemia and inhibit insulin secretion under fasting conditions to protect against hypoglycemia. β cells lack this functional capability at birth and acquire glucose-stimulated insulin secretion (GSIS) during neonatal life. Here, we have shown that during postnatal life, the de novo DNA methyltransferase DNMT3A initiates a metabolic program by repressing key genes, thereby enabling the coupling of insulin secretion to glucose levels. In a murine model, β cell-specific deletion of Dnmt3a prevented the metabolic switch, resulting in loss of GSIS. DNMT3A bound to the promoters of the genes encoding hexokinase 1 (HK1) and lactate dehydrogenase A (LDHA) - both of which regulate the metabolic switch - and knockdown of these two key DNMT3A targets restored the GSIS response in islets from animals with β cell-specific Dnmt3a deletion. Furthermore, DNA methylation-mediated repression of glucose-secretion decoupling genes to modulate GSIS was conserved in human β cells. Together, our results reveal a role for DNA methylation to direct the acquisition of pancreatic β cell function.
The Journal of Clinical Endocrinology and Metabolism | 2016
Alexandra E. Butler; Sangeeta Dhawan; Jonathan D. Hoang; Megan Cory; Kylie Zeng; Helga Fritsch; Juris J. Meier; Robert A. Rizza; Peter C. Butler
CONTEXT Type 2 diabetes is characterized by a β-cell deficit and a progressive defect in β-cell function. It has been proposed that the deficit in β-cells may be due to β-cell degranulation and transdifferentiation to other endocrine cell types. OBJECTIVE The objective of the study was to establish the potential impact of β-cell dedifferentiation and transdifferentiation on β-cell deficit in type 2 diabetes and to consider the alternative that cells with an incomplete identity may be newly forming rather than dedifferentiated. DESIGN, SETTING, AND PARTICIPANTS Pancreata obtained at autopsy were evaluated from 14 nondiabetic and 13 type 2 diabetic individuals, from four fetal cases, and from 10 neonatal cases. RESULTS Whereas there was a slight increase in islet endocrine cells expressing no hormone in type 2 diabetes (0.11 ± 0.03 cells/islet vs 0.03 ± 0.01 cells/islet, P < .01), the impact on the β-cell deficit would be minimal. Furthermore, we established that the deficit in β-cells per islet cannot be accounted for by an increase in other endocrine cell types. The distribution of hormone negative endocrine cells in type 2 diabetes (most abundant in cells scattered in the exocrine pancreas) mirrors that in developing (embryo and neonatal) pancreas, implying that these may represent newly forming cells. CONCLUSIONS Therefore, although we concur that in type 2 diabetes there are endocrine cells with altered cell identity, this process does not account for the deficit in β-cells in type 2 diabetes but may reflect, in part, attempted β-cell regeneration.
Journal of Clinical Investigation | 2013
Josie X. Zhou; Sangeeta Dhawan; Hualin Fu; Emily R. Snyder; Rita Bottino; Sharmistha Kundu; Seung K. Kim; Anil Bhushan
Inadequate functional β cell mass underlies both type 1 and type 2 diabetes. β Cell growth and regeneration also decrease with age through mechanisms that are not fully understood. Age-dependent loss of enhancer of zeste homolog 2 (EZH2) prevents adult β cell replication through derepression of the gene encoding cyclin-dependent kinase inhibitor 2a (INK4a). We investigated whether replenishing EZH2 could reverse the age-dependent increase of Ink4a transcription. We generated an inducible pancreatic β cell-specific Ezh2 transgenic mouse model and showed that transgene expression of Ezh2 was sufficient to increase β cell replication and regeneration in young adult mice. In mice older than 8 months, induction of Ezh2 was unable to repress Ink4a. Older mice had an enrichment of a trithorax group (TrxG) protein complex at the Ink4a locus. Knockdown of TrxG complex components, in conjunction with expression of Ezh2, resulted in Ink4a repression and increased replication of β cells in aged mice. These results indicate that combined modulation of polycomb group proteins, such as EZH2, along with TrxG proteins to repress Ink4a can rejuvenate the replication capacity of aged β cells. This study provides potential therapeutic targets for expansion of adult β cell mass.
Molecular Endocrinology | 2011
Shuen-Ing Tschen; Senta Georgia; Sangeeta Dhawan; Anil Bhushan
The glucoincretin hormone glucagon-like peptide-1 (GLP-1) and its analog exendin-4 (Ex-4) promote β-cell growth and expansion. Here we report an essential role for Skp2, a substrate recognition component of SCF (Skp, Cullin, F-box) ubiquitin ligase, in promoting glucoincretin-induced β-cell proliferation by regulating the cellular abundance of p27. In vitro, GLP-1 treatment increases Skp2 levels, which accelerates p27 degradation, whereas in vivo, loss of Skp2 prevents glucoincretin-induced β-cell proliferation. Using inhibitors of phosphatidylinositol 3-kinase and Irs2 silencing RNA, we also show that the effects of GLP-1 in facilitating Skp2-dependent p27 degradation are mediated via the Irs2-phosphatidylinositol-3 kinase pathway. Finally, we show that down-regulation of p27 occurs in islets from aged mice and humans, although in these islets, age-dependent accumulation of p16(Ink4a) prevent glucoincretin-induced β-cell proliferation; however, ductal cell proliferation is maintained. Taken together, these data highlight a critical role for Skp2 in glucoincretin-induced β-cell proliferation.
Diabetes | 2016
Sangeeta Dhawan; Ercument Dirice; Rohit N. Kulkarni; Anil Bhushan
Diabetes is associated with loss of functional pancreatic β-cells, and restoration of β-cells is a major goal for regenerative therapies. Endogenous regeneration of β-cells via β-cell replication has the potential to restore cellular mass; however, pharmacological agents that promote regeneration or expansion of endogenous β-cells have been elusive. The regenerative capacity of β-cells declines rapidly with age, due to accumulation of p16INK4a, resulting in limited capacity for adult endocrine pancreas regeneration. Here, we show that transforming growth factor-β (TGF-β) signaling via Smad3 integrates with the trithorax complex to activate and maintain Ink4a expression to prevent β-cell replication. Importantly, inhibition of TGF-β signaling can result in repression of the Ink4a/Arf locus, resulting in increased β-cell replication in adult mice. Furthermore, small molecule inhibitors of the TGF-β pathway promote β-cell replication in human islets transplanted into NOD-scid IL-2Rgnull mice. These data reveal a novel role for TGF-β signaling in the regulation of the Ink4a/Arf locus and highlight the potential of using small molecule inhibitors of TGF-β signaling to promote human β-cell replication.
The Journal of Clinical Endocrinology and Metabolism | 2016
Abu Saleh Md Moin; Sangeeta Dhawan; Christine Shieh; Peter C. Butler; Megan Cory; Alexandra E. Butler
CONTEXT AND OBJECTIVE Type 1 diabetes (T1D) is characterized by a β-cell deficit due to autoimmune inflammatory-mediated β-cell destruction. It has been proposed the deficit in β-cell mass in T1D may be in part due to β-cell degranulation to chromogranin-positive, hormone-negative (CPHN) cells. DESIGN, SETTING, AND PARTICIPANTS We investigated the frequency and distribution of CPHN cells in the pancreas of 15 individuals with T1D, 17 autoantibody-positive nondiabetic individuals, and 17 nondiabetic controls. RESULTS CPHN cells were present at a low frequency in the pancreas from nondiabetic and autoantibody-positive, brain-dead organ donors but are more frequently found in the pancreas from donors with T1D (islets: 1.11% ± 0.20% vs 0.26% ± 0.06 vs 0.27% ± 0.10% of islet endocrine cells, T1D vs autoantibody positive [AA+] vs nondiabetic [ND]; T1D vs AA+, and ND, P < .001). CPHN cells are most commonly found in the single cells and small clusters of endocrine cells rather than within established islets (clusters: 18.99% ± 2.09% vs 9.67% ± 1.49% vs 7.42% ± 1.26% of clustered endocrine cells, T1D vs AA+ vs ND; T1D vs AA+ and ND, P < .0001), mimicking the distribution present in neonatal pancreas. CONCLUSIONS From these observations, we conclude that CPHN cells are more frequent in T1D and, as in type 2 diabetes, are distributed in a pattern comparable with the neonatal pancreas, implying a possible attempted regeneration. In contrast to rodents, CPHN cells are insufficient to account for loss of β-cell mass in T1D.