Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sangita Biswas is active.

Publication


Featured researches published by Sangita Biswas.


Pediatric Research | 2002

Substrate-Reduction Therapy Enhances the Benefits of Bone Marrow Transplantation in Young Mice with Globoid Cell Leukodystrophy

Sangita Biswas; Steven M. LeVine

Globoid cell leukodystrophy is an autosomal recessive disease with progressive demyelination caused by a deficiency of the lysosomal enzyme galactosylceramidase. Bone marrow transplantation (BMT) is a therapeutic option for patients with late-onset disease and for patients with early onset disease that had an early diagnosis owing to an affected sibling. This therapy, however, typically is not effective for early onset disease when the diagnosis occurs after several months of life. In an effort to enable a broader range of patients to benefit from BMT, we tested whether combining substrate-reduction therapy with BMT would result in a greater benefit than either treatment alone in the twitcher mouse model of globoid cell leukodystrophy. Twitcher mice treated with l-cycloserine, an inhibitor of 3-ketodyhydrosphingosine synthase, and transplanted with 50 ± 5 × 106 bone marrow cells on d 10 had a mean life-span of 112 d compared with 51 d for BMT alone (p < 0.001) or l-cycloserine alone, which was previously reported to be 56 d. l-Cycloserine treatment also was initiated neonatally to determine whether it would allow for a delayed BMT to have therapeutic value. Twitcher mice given only BMT at 18 d or only a short course of l-cycloserine died at 36 and 37 d, respectively. Twitcher mice given a short course of l-cycloserine + BMT at 18 d lived to 58 d (p = 0.0006). In conclusion, substrate-reduction therapy enhanced the value of BMT in twitcher mice, suggesting that this combination strategy might benefit patients with globoid cell leukodystrophy.


International Journal of Molecular Sciences | 2015

Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

Juan Xiao; Rongbing Yang; Sangita Biswas; Xin Qin; Min Zhang; Wenbin Deng

Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.


Cancer Medicine | 2016

Does Notch play a tumor suppressor role across diverse squamous cell carcinomas

Min Zhang; Sangita Biswas; Xin Qin; Wenrong Gong; Wenbing Deng; Hongjun Yu

The role of Notch pathway in tumorigenesis is highly variable. It can be tumor suppressive or pro‐oncogenic, typically depending on the cellular context. Squamous cell carcinoma (SCC) is a cancer of the squamous cell, which can occur in diverse human tissues. SCCs are one of the most frequent human malignancies for which the pathologic mechanisms remain elusive. Recent genomic analysis of diverse SCCs identified marked levels of mutations in NOTCH1, implicating Notch signaling pathways in the pathogenesis of SCCs. In this review, evidences highlighting NOTCHs role in different types of SCCs are summarized. Moreover, based on accumulating structural information of the NOTCH receptor, the functional consequences of NOTCH1 gene mutations identified from diverse SCCs are analyzed, emphasizing loss of function of Notch in these cancers. Finally, we discuss the convergent view on an intriguing possibility that Notch may function as tumor suppressor in SCCs across different tissues. These mechanistic insights into Notch signaling pathways will help to guide the research of SCCs and development of therapeutic strategies for these cancers.


Cell Death and Disease | 2015

The p38α mitogen-activated protein kinase is a key regulator of myelination and remyelination in the CNS.

Seung Hyuk Chung; Sangita Biswas; Vimal Selvaraj; Xiao Bo Liu; Jiho Sohn; Peng Jiang; Chen Chen; F. Chmilewsky; H. Marzban; Makoto Horiuchi; David Pleasure; Wenbin Deng

The p38α mitogen-activated protein kinase (MAPK) is one of the serine/threonine kinases regulating a variety of biological processes, including cell-type specification, differentiation and migration. Previous in vitro studies using pharmacological inhibitors suggested that p38 MAPK is essential for oligodendrocyte (OL) differentiation and myelination. To investigate the specific roles of p38α MAPK in OL development and myelination in vivo, we generated p38α conditional knockout (CKO) mice under the PLP and nerve/glial antigen 2 (NG2) gene promoters, as these genes are specifically expressed in OL progenitor cells (OPCs). Our data revealed that myelin synthesis was completely inhibited in OLs differentiated from primary OPC cultures derived from the NG2 Cre-p38α CKO mouse brains. Although an in vivo myelination defect was not obvious after gross examination of these mice, electron microscopic analysis showed that the ultrastructure of myelin bundles was severely impaired. Moreover, the onset of myelination in the corpus callosum was delayed in the knockout mice compared with p38α fl/fl control mice. A delay in OL differentiation in the central nervous system was observed with concomitant downregulation in the expression of OPC- and OL-specific genes such as Olig1 and Zfp488 during early postnatal development. OPC proliferation was not affected during this time. These data indicate that p38α is a positive regulator of OL differentiation and myelination. Unexpectedly, we observed an opposite effect of p38α on remyelination in the cuprizone-induced demyelination model. The p38α CKO mice exhibited better remyelination capability compared with p38α fl/fl mice following demyelination. The opposing roles of p38α in myelination and remyelination could be due to a strong anti-inflammatory effect of p38α or a dual reciprocal regulatory action of p38α on myelin formation during development and on remyelination after demyelination.


BMC Medicine | 2012

Potential immunological consequences of pharmacological suppression of gastric acid production in patients with multiple sclerosis

Sangita Biswas; Stephen H. Benedict; Sharon G. Lynch; Steven M. LeVine

Corticosteroids are standard treatment for patients with multiple sclerosis experiencing acute relapse. Because dyspeptic pain is a common side effect of this intervention, patients can be given a histamine receptor-2 antagonist, proton pump inhibitor or antacid to prevent or ameliorate this disturbance. Additionally, patients with multiple sclerosis may be taking these medications independent of corticosteroid treatment. Interventions for gastric disturbances can influence the activation state of the immune system, a principal mediator of pathology in multiple sclerosis. Although histamine release promotes inflammation, activation of the histamine receptor-2 can suppress a proinflammatory immune response, and blocking histamine receptor-2 with an antagonist could shift the balance more towards immune stimulation. Studies utilizing an animal model of multiple sclerosis indicate that histamine receptor-2 antagonists potentially augment disease activity in patients with multiple sclerosis. In contrast, proton pump inhibitors appear to favor immune suppression, but have not been studied in models of multiple sclerosis. Antacids, histamine receptor-2 antagonists and proton pump inhibitors also could alter the intestinal microflora, which may indirectly lead to immune stimulation. Additionally, elevated gastric pH can promote the vitamin B12 deficiency that patients with multiple sclerosis are at risk of developing. Here, we review possible roles of gastric acid inhibitors on immunopathogenic mechanisms associated with multiple sclerosis.


Molecular Neurobiology | 2018

Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis

Juan Xiao; Rongbing Yang; Sangita Biswas; Yunhua Zhu; Xin Qin; Min Zhang; Lihong Zhai; Yi Luo; Xiaoming He; Chun Mao; Wenbin Deng

Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and demyelinating disorder of the central nervous system (CNS), which ultimately leads to axonal loss and permanent neurological disability. Current treatments for MS are largely comprised of medications that are either immunomodulatory or immunosuppressive and are aimed at reducing the frequency and intensity of relapses. Neural stem cells (NSCs) in the adult brain can differentiate into oligodendrocytes in a context-specific manner and are shown to be involved in the remyelination in these patients. NSCs may exert their beneficial effects not only through oligodendrocyte replacement but also by providing trophic support and immunomodulation, a phenomenon now known as “therapeutic plasticity.” In this review, we first provided an update on the current knowledge regarding MS pathogenesis and the role of immune cells, microglia, and oligodendrocytes in MS disease progression. Next, we reviewed the current progress on research aimed toward stimulating endogenous NSC proliferation and differentiation to oligodendrocytes in vivo and in animal models of demyelination. In addition, we explored the neuroprotective and immunomodulatory effects of transplanted exogenous NSCs on T cell activation, microglial activation, and endogenous remyelination and their effects on the pathological process and prognosis in animal models of MS. Finally, we examined various protocols to generate genetically engineered NSCs as a potential therapy for MS. Overall, this review highlights the studies involving the immunomodulatory, neurotrophic, and regenerative effects of NSCs and novel methods aiming at stimulating the potential of NSCs for the treatment of MS.


Scientific Reports | 2016

The Crystal Structure of Monovalent Streptavidin

Min Zhang; Sangita Biswas; Wenbin Deng; Hongjun Yu

The strong interaction between streptavidin (SA) and biotin is widely utilized in biotechnological applications. A SA variant, monovalent SA, was developed with a single and high affinity biotin-binding site within the intact tetramer. However, its structural characterization remains undetermined. Here, we seek to determine the crystal structure of monovalent SA at 1.7-Å resolution. We show that, in contrast to its ‘close-state’ in the only wild-type subunit, the L3,4 loops of three Dead SA subunits are free from crystal packing and remain in an ‘open state’, stabilized by a consistent H-bonding network involving S52. This H-bonding network also applies to the previously reported open state of the wild-type apo-SA. These results suggest that specific substitutions (N23A/S27D/S45A) at biotin-binding sites stabilize the open state of SA L3,4 loop, thereby further reducing biotin-binding affinity. The general features of the ‘open state’ SA among different SA variants may facilitate its rational design. The structural information of monovalent SA will be valuable for its applications across a wide range of biotechnological areas.


Methods | 2017

Methods of reactivation and reprogramming of neural stem cells for neural repair

Zuojun Tian; Qiuge Zhao; Sangita Biswas; Wenbin Deng

Research on the biology of adult neural stem cells (NSCs) and induced NSCs (iNSCs), as well as NSC-based therapies for diseases in central nervous system (CNS) has started to generate the expectation that these cells may be used for treatments in CNS injuries or disorders. Recent technological progresses in both NSCs themselves and their derivatives have brought us closer to therapeutic applications. Adult neurogenesis presents in particular regions in mammal brain, known as neurogenic niches such as the dental gyrus (DG) in hippocampus and the subventricular zone (SVZ), within which adult NSCs usually stay for long periods out of the cell cycle, in G0. The reactivation of quiescent adult NSCs needs orchestrated interactions between the extrinsic stimulis from niches and the intrinsic factors involving transcription factors (TFs), signaling pathway, epigenetics, and metabolism to start an intracellular regulatory program, which promotes the quiescent NSCs exit G0 and reenter cell cycle. Extrinsic and intrinsic mechanisms that regulate adult NSCs are interconnected and feedback on one another. Since endogenous neurogenesis only happens in restricted regions and steadily fails with disease advances, interest has evolved to apply the iNSCs converted from somatic cells to treat CNS disorders, as is also promising and preferable. To overcome the limitation of viral-based reprogramming of iNSCs, bioactive small molecules (SM) have been explored to enhance the efficiency of iNSC reprogramming or even replace TFs, making the iNSCs more amenable to clinical application. Despite intense research efforts to translate the studies of adult and induced NSCs from the bench to bedside, vital troubles remain at several steps in these processes. In this review, we examine the present status, advancement, pitfalls, and potential of the two types of NSC technologies, focusing on each aspects of reactivation of quiescent adult NSC and reprogramming of iNSC from somatic cells, as well as on progresses in cell-based regenerative strategies for neural repair and criteria for successful therapeutic applications.


International Journal of Molecular Sciences | 2016

Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells

Zuojun Tian; Fuzheng Guo; Sangita Biswas; Wenbin Deng

Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs.


Neuroscience | 2018

The p38α MAPK Deletion in Oligodendroglia does not Attenuate Myelination Defects in a Mouse Model of Periventricular Leukomalacia

Seung H. Chung; Sangita Biswas; Jiho Sohn; Peng Jiang; Samaneh Dehghan; Hassan Marzban; Wenbin Deng

Periventricular leukomalacia (PVL) is a severe type of white matter damage in premature infants and the most common cause of cerebral palsy. It is generally known to be caused by hypoxia and inflammation. Currently there is no effective treatment available, in part due to that the pathogenesis of the disease has not been well understood. The p38α mitogen-activated protein kinase (MAPK) is the serine/threonine kinase and several in vitro studies demonstrated that p38 MAPK is essential for oligodendroglial differentiation and myelination. Indeed, our nerve/glial antigen 2 (NG2)-specific oligodendroglial p38α MAPK conditional knockout (CKO) mice revealed its complex roles in myelination and remyelination. To identify the specific in vivo roles of oligodendroglial p38α MAPK in PVL, we generated a mouse PVL model by combination of LPS-mediated inflammation and hypoxia-ischemia in NG2-p38α MAPK CKO mice. Our results demonstrate that a selective deletion of p38α MAPK in oligodendrocyte did not attenuate myelination defects in the mouse model of PVL. Myelination phenotype revealed by MBP immunostaining was not significantly affected in the p38α MAPK CKO mice compared to the wildtype after PVL induction. The electron microscopic images demonstrated that the microstructure of myelin structures was not significantly different between the wild-type and p38α MAPK CKO mice. In addition, oligodendrocyte degeneration in the corpus callosum white matter area was unaffected in the p38α MAPK CKO during and after the PVL induction. These data indicate that p38α MAPK in oligodendrocyte has minimal effect on myelination and oligodendrocyte survival in the mouse PVL model.

Collaboration


Dive into the Sangita Biswas's collaboration.

Top Co-Authors

Avatar

Wenbin Deng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongjun Yu

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jiho Sohn

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

Juan Xiao

University of California

View shared research outputs
Top Co-Authors

Avatar

Peng Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Zuojun Tian

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge