Sangram S. Sisodia
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sangram S. Sisodia.
Neuron | 1996
David R. Borchelt; Gopal Thinakaran; Christopher B. Eckman; Michael K. Lee; Frances Davenport; Tamara Ratovitsky; Cristian Mihail Prada; Grace Kim; Sophia Seekins; Debra Yager; Hilda H. Slunt; Rong Wang; Mary Seeger; Allan I. Levey; Samuel E. Gandy; Neal G. Copeland; Nancy A. Jenkins; Donald L. Price; Steven G. Younkin; Sangram S. Sisodia
Mutations in the presenilin 1 (PS1) and presenilin 2 genes cosegregate with the majority of early-onset familial Alzheimers disease (FAD) pedigrees. We now document that the Abeta1-42(43)/Abeta1-40 ratio in the conditioned media of independent N2a cell lines expressing three FAD-linked PS1 variants is uniformly elevated relative to cells expressing similar levels of wild-type PS1. Similarly, the Abeta1-42(43)/Abeta1-40 ratio is elevated in the brains of young transgenic animals coexpressing a chimeric amyloid precursor protein (APP) and an FAD-linked PS1 variant compared with brains of transgenic mice expressing APP alone or transgenic mice coexpressing wild-type human PS1 and APP. These studies provide compelling support for the view that one mechanism by which these mutant PS1 cause AD is by increasing the extracellular concentration of Abeta peptides terminating at 42(43), species that foster Abeta deposition.
Neuron | 1995
Philip C. Wong; Carlos A. Pardo; David R. Borchelt; Michael K. Lee; Neal G. Copeland; Nancy A. Jenkins; Sangram S. Sisodia; Don W. Cleveland; Donald L. Price
Mutations in Cu/Zn superoxide dismutase (SOD1) cause a subset of cases of familial amyotrophic lateral sclerosis. Four lines of mice accumulating one of these mutant proteins (G37R) develop severe, progressive motor neuron disease. At lower levels of mutant accumulation, pathology is restricted to lower motor neurons, whereas higher levels cause more severe abnormalities and affect a variety of other neuronal populations. The most obvious cellular abnormality is the presence in axons and dendrites of membrane-bounded vacuoles, which appear to be derived from degenerating mitochondria. Since multiple lines of mice expressing wild-type human SOD1 at similar and higher levels do not show disease, the disease in mice expressing the G37R mutant SOD1 must arise from the acquisition of an adverse property by the mutant enzyme, rather than elevation or loss of SOD1 activity.
Neuron | 2003
Flavio Kamenetz; Taisuke Tomita; Helen Hsieh; Guy R. Seabrook; David R. Borchelt; Takeshi Iwatsubo; Sangram S. Sisodia; Roberto Malinow
A large body of evidence has implicated Abeta peptides and other derivatives of the amyloid precursor protein (APP) as central to the pathogenesis of Alzheimers disease (AD). However, the functional relationship of APP and its proteolytic derivatives to neuronal electrophysiology is not known. Here, we show that neuronal activity modulates the formation and secretion of Abeta peptides in hippocampal slice neurons that overexpress APP. In turn, Abeta selectively depresses excitatory synaptic transmission onto neurons that overexpress APP, as well as nearby neurons that do not. This depression depends on NMDA-R activity and can be reversed by blockade of neuronal activity. Synaptic depression from excessive Abeta could contribute to cognitive decline during early AD. In addition, we propose that activity-dependent modulation of endogenous Abeta production may normally participate in a negative feedback that could keep neuronal hyperactivity in check. Disruption of this feedback system could contribute to disease progression in AD.
Neuron | 1997
Lucie I. Bruijn; Mark W. Becher; Michael K. Lee; K.L. Anderson; Nancy A. Jenkins; Neal G. Copeland; Sangram S. Sisodia; Jeffery Rothstein; David R. Borchelt; Donald L. Price; Don W. Cleveland
High levels of familial Amyotrophic Lateral Sclerosis (ALS)-linked SOD1 mutants G93A and G37R were previously shown to mediate disease in mice through an acquired toxic property. We report here that even low levels of another mutant, G85R, cause motor neuron disease characterized by an extremely rapid clinical progression, without changes in SOD1 activity. Initial indicators of disease are astrocytic inclusions that stain intensely with SOD1 antibodies and ubiquitin and SOD1-containing aggregates in motor neurons, features common with some cases of SOD1 mutant-mediated ALS. Astrocytic inclusions escalate markedly as disease progresses, concomitant with a decrease in the glial glutamate transporter (GLT-1). Thus, the G85R SOD1 mutant mediates direct damage to astrocytes, which may promote the nearly synchronous degeneration of motor neurons.
Neuron | 1996
Gopal Thinakaran; David R. Borchelt; Michael K. Lee; Hilda H. Slunt; Lia Spitzer; Grace E. Kim; Tamara Ratovitsky; Frances Davenport; Christer Nordstedt; Mary Seeger; John Hardy; Allan I. Levey; Samuel E. Gandy; Nancy A. Jenkins; Neal G. Copeland; Donald L. Price; Sangram S. Sisodia
The majority of early-onset cases of familial Alzheimers disease (FAD) are linked to mutations in two related genes, PS1 and PS2, located on chromosome 14 and 1, respectively. Using two highly specific antibodies against nonoverlapping epitopes of the PS1-encoded polypeptide, termed presenilin 1 (PS1), we document that the preponderant PS1-related species that accumulate in cultured mammalian cells, and in the brains of rodents, primates, and humans are approximately 27-28 kDa N-terminal and approximately 16-17 kDa C-terminal derivatives. Notably, a FAD-linked PS1 variant that lacks exon 9 is not subject to endoproteolytic cleavage. In brains of transgenic mice expressing human PS1, approximately 17 kDa and approximately 27 kDa PS1 derivatives accumulate to saturable levels, and at approximately 1:1 stoichiometry, independent of transgene-derived mRNA. We conclude that PS1 is subject to endoproteolytic processing in vivo.
Neuron | 1997
David R. Borchelt; Tamara Ratovitski; Judy van Lare; Michael K. Lee; Vicki Gonzales; Nancy A. Jenkins; Neal G. Copeland; Donald L. Price; Sangram S. Sisodia
Missense mutations in two related genes, termed presenilin 1 (PS1) and presenilin 2 (PS2), cause dementia in a subset of early-onset familial Alzheimers disease (FAD) pedigrees. In a variety of experimental in vitro and in vivo settings, FAD-linked presenilin variants influence the processing of the amyloid precursor protein (APP), leading to elevated levels of the highly fibrillogenic Abeta1-42 peptides that are preferentially deposited in the brains of Alzheimer Disease (AD) patients. In this report, we demonstrate that transgenic animals that coexpress a FAD-linked human PS1 variant (A246E) and a chimeric mouse/human APP harboring mutations linked to Swedish FAD kindreds (APP swe) develop numerous amyloid deposits much earlier than age-matched mice expressing APP swe and wild-type Hu PS1 or APP swe alone. These results provide evidence for the view that one pathogenic mechanism by which FAD-linked mutant PS1 causes AD is to accelerate the rate of beta-amyloid deposition in brain.
Neuron | 2006
Helen Hsieh; Jannic Boehm; Chihiro Sato; Takeshi Iwatsubo; Taisuke Tomita; Sangram S. Sisodia; Roberto Malinow
Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimers disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD) to drive endocytosis of synaptic AMPA receptors. Synaptic removal of AMPA receptors is necessary and sufficient to produce loss of dendritic spines and synaptic NMDA responses. Our studies indicate the central role played by AMPA receptor trafficking in Abeta-induced modification of synaptic structure and function.
Nature Genetics | 1995
Roger H. Reeves; Nicholas G. Irving; Timothy H. Moran; Anny Wohn; Cheryl A. Kitt; Sangram S. Sisodia; Cecilia Schmidt; Roderick T. Bronson; Muriel T. Davisson
Trisomy 21 or Down syndrome (DS) is the most frequent genetic cause of mental retardation, affecting one in 800 live born human beings. Mice with segmental trisomy 16 (Ts65Dn mice) are at dosage imbalance for genes corresponding to those on human chromosome 21q21–22.3—which includes the so–called DS ‘critical region’. They do not show early–onset of Alzheimer disease pathology; however, Ts65Dn mice do demonstrate impaired performance in a complex learning task requiring the integration of visual and spatial information. The reproducibility of this phenotype among Ts65Dn mice indicates that dosage imbalance for a gene or genes in this region contributes to this impairment. The corresponding dosage imbalance for the human homologues of these genes may contribute to cognitive deficits in DS.
Cell | 1995
Hui Zheng; Minghao Jiang; Myrna E. Trumbauer; D.J.S. Sirinathsinghji; R. Hopkins; David W Smith; Robert P. Heavens; Gerard R. Dawson; Susan Boyce; Michael W. Conner; Karla Stevens; Hilda H. Slunt; Sangram S. Sisodia; Howard Y. Chen; Lex H.T. Van der Ploeg
In several pedigrees of early onset familial Alzheimers disease (FAD), point mutations in the beta-amyloid precursor protein (APP) gene are genetically linked to the disease. This finding implicates APP in the pathogenesis of Alzheimers disease in these individuals. To understand the in vivo function of APP and its processing, we have generated an APP-null mutation in mice. Homozygous APP-deficient mice were viable and fertile. However, the mutant animals weighed 15%-20% less than age-matched wild-type controls. Neurological evaluation showed that the APP-deficient mice exhibited a decreased locomotor activity and forelimb grip strength, indicating a compromised neuronal or muscular function. In addition, four out of six homozygous mice showed reactive gliosis at 14 weeks of age, suggesting an impaired neuronal function as a result of the APP-null mutation.
Nature Reviews Neuroscience | 2002
Sangram S. Sisodia; Peter St George-Hyslop
Investigations into the proteolytic processing of amyloid precursor protein (APP) have provided insights into both the pathogenesis of Alzheimers disease and an unusual form of regulated proteolytic processing within the membrane-spanning domains of several proteins, including APP, Notch and ErbB4. Some of the enzymes responsible for α- and β-secretase cleavage have been identified, and these seem to be conventional proteolytic events. However, the molecular events that are involved in γ-secretase cleavage within the transmembrane domain of these proteins are much more complex. The presenilins and nicastrin are required for this process, but the role of the presenilins remains unclear. Although some data support the idea that the presenilins are in fact the active site of γ-secretase, other data indicate that they might have a more indirect role — for example, in transporting substrates to the correct subcellular compartments for γ-secretase cleavage.