Sangun Park
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sangun Park.
Statistics & Probability Letters | 1999
Sangun Park
The sample entropy, the estimate of the entropy per observation, has been introduced by Vasicek (1976) (A test for normality based on sample entropy, J. Royal Statist. Soc. B 38, 730-737). In this paper, we provide the sample entropy of order statistics, and present one application of the sample entropy of order statistics as a test of normality versus skewness. The proposed test statistic has comparable performance with other existing tests.
Statistics | 2014
Sangun Park; Minsuk Shin
In this paper, we study the Kullback–Leibler (KL) information of a censored variable, which we will simply call it censored KL information. The censored KL information is shown to have the necessary monotonicity property in addition to inherent properties of nonnegativity and characterization. We also present a representation of the censored KL information in terms of the relative risk and study its relation with the Fisher information in censored data. Finally, we evaluate the estimated censored KL information as a goodness-of-fit test statistic.
Statistics | 2011
Sangun Park; N. Balakrishnan; Seong W. Kim
The hybrid censoring scheme, which is a mixture of Type-I and Type-II censoring schemes, has been extended to the case of progressive censoring schemes by Kundu and Joarder [Analysis of Type-II progressively hybrid censored data, Comput. Stat. Data Anal. 50 (2006), pp. 2509–2528] and Childs et al. [Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, in Statistical Models and Methods for Biomedical and Technical Systems, F. Vonta, M. Nikulin, N. Limnios, and C. Huber-Carol, eds., Birkhäuser, Boston, MA, 2007, pp. 323–334]. In this paper, we derive a simple expression for the Fisher information contained in Type-I and Type-II progressively hybrid censored data. An illustrative example is provided applicable to a scaled-exponential distribution to demonstrate our methodologies.
Statistics & Probability Letters | 1996
Sangun Park
In the decomposition of the score function based on all the order statistics, we study the asymptotic behaviour of the maximum conditional likelihood estimator, based on the second term on the right, and suggest an indirect way to study that of the maximum likelihood estimator based on the first term. We also give an asymptotic relation between the maximum likelihood estimators in each part.
Journal of Statistical Computation and Simulation | 2017
Sangun Park; Ilmun Kim
ABSTRACT In this paper, we suggest an extension of the cumulative residual entropy (CRE) and call it generalized cumulative entropy. The proposed entropy not only retains attributes of the existing uncertainty measures but also possesses the absolute homogeneous property with unbounded support, which the CRE does not have. We demonstrate its mathematical properties including the entropy of order statistics and the principle of maximum general cumulative entropy. We also introduce the cumulative ratio information as a measure of discrepancy between two distributions and examine its application to a goodness-of-fit test of the logistic distribution. Simulation study shows that the test statistics based on the cumulative ratio information have comparable statistical power with competing test statistics.
Communications for Statistical Applications and Methods | 2016
Sangun Park; Jihwan Park; Young‐sik Choi
Many of studies have suggested the modifications on Weibull distribution to model the non-monotone hazards. In this paper, we combine two cumulative hazard functions and propose a new modified Weibull distribution function. The newly suggested distribution will be named as a new flexible Weibull distribution. Corresponding hazard function of the proposed distribution shows flexible (monotone or non-monotone) shapes. We study the characteristics of the proposed distribution that includes ageing behavior, moment, and order statistic. We also discuss an estimation method for its parameters. The performance of the proposed distribution is compared with existing modified Weibull distributions using various types of hazard functions. We also use real data example to illustrate the efficiency of the proposed distribution.
Communications in Statistics-theory and Methods | 2018
Ilmun Kim; Sangun Park
ABSTRACT This paper presents some powerful omnibus tests for multivariate normality based on the likelihood ratio and the characterizations of the multivariate normal distribution. The power of the proposed tests is studied against various alternatives via Monte Carlo simulations. Simulation studies show our tests compare well with other powerful tests including multivariate versions of the Shapiro–Wilk test and the Anderson–Darling test.
Communications for Statistical Applications and Methods | 2015
Ilmun Kim; Sangun Park
A calculation of the Kullback-Leibler information of consecutive order statistics is complicated because it depends on a multi-dimensional integral. Park (2014) discussed a representation of the Kullback-Leibler information of the first r order statistics in terms of the hazard function and simplified the r-fold integral to a single integral. In this paper, we first express the Kullback-Leibler information in terms of the reversed hazard function. Then we establish a generalized result of Park (2014) to an arbitrary consecutive order statistics. We derive a single integral form of the Kullback-Leibler information of an arbitrary block of order statistics; in addition, its relation to the Fisher information of order statistics is discussed with numerical examples provided.
Statistics & Probability Letters | 2009
Sangun Park; N. Balakrishnan
Statistics & Probability Letters | 2012
Sangun Park; Murali Rao; Dong Wan Shin