Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sangwon V. Kim is active.

Publication


Featured researches published by Sangwon V. Kim.


Nature | 2011

Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity.

Jun R. Huh; Monica W.L. Leung; Pengxiang Huang; Daniel A. Ryan; Michael R. Krout; Raghu R. V. Malapaka; Jonathan Chow; Nicolas Manel; Maria Ciofani; Sangwon V. Kim; Adolfo Cuesta; Fabio R. Santori; Juan J. Lafaille; H. Eric Xu; David Y. Gin; Fraydoon Rastinejad; Dan R. Littman

CD4+ T helper lymphocytes that express interleukin-17 (TH17 cells) have critical roles in mouse models of autoimmunity, and there is mounting evidence that they also influence inflammatory processes in humans. Genome-wide association studies in humans have linked genes involved in TH17 cell differentiation and function with susceptibility to Crohn’s disease, rheumatoid arthritis and psoriasis. Thus, the pathway towards differentiation of TH17 cells and, perhaps, of related innate lymphoid cells with similar effector functions, is an attractive target for therapeutic applications. Mouse and human TH17 cells are distinguished by expression of the retinoic acid receptor-related orphan nuclear receptor RORγt, which is required for induction of IL-17 transcription and for the manifestation of TH17-dependent autoimmune disease in mice. By performing a chemical screen with an insect cell-based reporter system, we identified the cardiac glycoside digoxin as a specific inhibitor of RORγt transcriptional activity. Digoxin inhibited murine TH17 cell differentiation without affecting differentiation of other T cell lineages and was effective in delaying the onset and reducing the severity of autoimmune disease in mice. At high concentrations, digoxin is toxic for human cells, but non-toxic synthetic derivatives 20,22-dihydrodigoxin-21,23-diol and digoxin-21-salicylidene specifically inhibited induction of IL-17 in human CD4+ T cells. Using these small-molecule compounds, we demonstrate that RORγt is important for the maintenance of IL-17 expression in mouse and human effector T cells. These data indicate that derivatives of digoxin can be used as chemical templates for the development of RORγt-targeted therapeutic agents that attenuate inflammatory lymphocyte function and autoimmune disease.


Science | 2016

The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring.

Gloria B. Choi; Yeong S. Yim; Helen Wong; Sangdoo Kim; Hyunju Kim; Sangwon V. Kim; Charles A. Hoeffer; Dan R. Littman; Jun R. Huh

A T cell cause for autism? The causes of autism spectrum disorder (ASD) are complex and not entirely clear. Alterations in the mothers immune system during pregnancy, especially during key early periods of fetal neurodevelopment, may play a role. Choi et al. provided infectious or inflammatory stimuli to pregnant mice, which resulted in of spring exhibiting behaviors reminiscent of ASD (see the Perspective by Estes and McAllister). A subset of T helper cells that make the cytokine interleukin-17a in the mothers caused cortical defects and associated ASD behaviors in offspring. Therapeutic targeting of interleukin-17a during gestation reduced ASD symptoms in offspring. Science, this issue p. 933; see also p. 919 Interleukin-17–producing T cells act during gestation to induce cortical and behavioral abnormalities in offspring. [Also see Perspective by Estes and McAllister] Viral infection during pregnancy has been correlated with increased frequency of autism spectrum disorder (ASD) in offspring. This observation has been modeled in rodents subjected to maternal immune activation (MIA). The immune cell populations critical in the MIA model have not been identified. Using both genetic mutants and blocking antibodies in mice, we show that retinoic acid receptor–related orphan nuclear receptor gamma t (RORγt)–dependent effector T lymphocytes [for example, T helper 17 (TH17) cells] and the effector cytokine interleukin-17a (IL-17a) are required in mothers for MIA-induced behavioral abnormalities in offspring. We find that MIA induces an abnormal cortical phenotype, which is also dependent on maternal IL-17a, in the fetal brain. Our data suggest that therapeutic targeting of TH17 cells in susceptible pregnant mothers may reduce the likelihood of bearing children with inflammation-induced ASD-like phenotypes.


Science | 2013

GPR15-Mediated Homing Controls Immune Homeostasis in the Large Intestine Mucosa

Sangwon V. Kim; Wenkai V. Xiang; Changsoo Kwak; Yi Yang; Xiyao W. Lin; Mitsuhiko Ota; Umut Sarpel; Daniel B. Rifkin; Ruliang Xu; Dan R. Littman

GPR15 Gets Tregs to Guard the Gut The large intestine is the site that is typically most inflamed in Crohns disease and ulcerative colitis, which are thought to result when the immune system is not able to keep the peace with trillions of resident gut microbes. The immune system does this by recruiting specific cell populations, like regulatory T cells (Tregs), to the gut. Kim et al. (p. 1456, published online 9 May) now suggest that the orphan G protein–coupled receptor GPR15 is expressed by Tregs and required for Treg homing to the large intestine in mice. A G protein–coupled receptor helps to localize regulatory T cells in the large intestine. Lymphocyte homing, which contributes to inflammation, has been studied extensively in the small intestine, but there is little known about homing to the large intestine, the site most commonly affected in inflammatory bowel disease. GPR15, an orphan heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptor, controlled the specific homing of T cells, particularly FOXP3+ regulatory T cells (Tregs), to the large intestine lamina propria (LILP). GPR15 expression was modulated by gut microbiota and transforming growth factor–β1, but not by retinoic acid. GPR15-deficient mice were prone to develop more severe large intestine inflammation, which was rescued by the transfer of GPR15-sufficient Tregs. Our findings thus describe a T cell–homing receptor for LILP and indicate that GPR15 plays a role in mucosal immune tolerance largely by regulating the influx of Tregs.


Nature | 2015

DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions

Wendy Huang; Benjamin Thomas; Ryan A. Flynn; Samuel J. Gavzy; Lin Wu; Sangwon V. Kim; Jason A. Hall; Emily R. Miraldi; Charles Ng; Frank Rigo; Sarah Meadows; Nina R. Montoya; Natalia G. Herrera; Ana I. Domingos; Fraydoon Rastinejad; Richard M. Myers; Frances V. Fuller-Pace; Richard Bonneau; Howard Y. Chang; Oreste Acuto; Dan R. Littman

T helper 17 (TH17) lymphocytes protect mucosal barriers from infections, but also contribute to multiple chronic inflammatory diseases. Their differentiation is controlled by RORγt, a ligand-regulated nuclear receptor. Here we identify the RNA helicase DEAD-box protein 5 (DDX5) as a RORγt partner that coordinates transcription of selective TH17 genes, and is required for TH17-mediated inflammatory pathologies. Surprisingly, the ability of DDX5 to interact with RORγt and coactivate its targets depends on intrinsic RNA helicase activity and binding of a conserved nuclear long noncoding RNA (lncRNA), Rmrp, which is mutated in patients with cartilage-hair hypoplasia. A targeted Rmrp gene mutation in mice, corresponding to a gene mutation in cartilage-hair hypoplasia patients, altered lncRNA chromatin occupancy, and reduced the DDX5–RORγt interaction and RORγt target gene transcription. Elucidation of the link between Rmrp and the DDX5–RORγt complex reveals a role for RNA helicases and lncRNAs in tissue-specific transcriptional regulation, and provides new opportunities for therapeutic intervention in TH17-dependent diseases.


Journal of Immunology | 2003

A Pool of Central Memory-Like CD4 T Cells Contains Effector Memory Precursors

J. Magarian Blander; Derek B. Sant’Angelo; Daniela Metz; Sangwon V. Kim; Richard A. Flavell; Kim Bottomly; Charles A. Janeway

The L51S mutation in the D10.G4.1 TCR α-chain reduces the affinity of the TCR to its ligand by affecting the interactions among the TCR, the β-chain of I-Ak, and the bound peptide. We show that this mutation drives the generation of a pool of memory CD44highCD62LnegCD45RBneg CD4 TCR transgenic T cells. Their activation threshold is low, such that they proliferate in response to lower concentrations of agonist peptides than naive L51S CD4 T cells. Unlike effector memory CD4 T cells, however, they lack immediate effector function in response to TCR stimulation. These cells express IL-2Rα only after culture with specific peptide. Although they can be recovered from lymph nodes, the majority lack the expression of the lymph node homing receptor CCR7. When these cells receive a second TCR stimulation in vitro, they differentiate into potent Th2-like effector cells, producing high levels of IL-4 at doses of agonist peptide too low to stimulate cytokine release from similarly differentiated naive L51S CD4 T cells. Having these properties, the L51S TCR transgenic memory CD4 T cells cannot be classified as either strict central memory or effector memory, but, rather, as a pool of memory T cells containing effector memory precursors.


Cold Spring Harbor Symposia on Quantitative Biology | 2013

Microbiota: Host Interactions in Mucosal Homeostasis and Systemic Autoimmunity

Randy S. Longman; Yi Yang; Gretchen E. Diehl; Sangwon V. Kim; Dan R. Littman

The vertebrate intestinal tract is colonized by hundreds of species of bacteria that must be compartmentalized and tolerated to prevent invasive growth and harmful inflammatory responses. Signaling initiated by commensal bacteria shapes antigen-specific mucosal and systemic adaptive immunity. A distinct type of effector CD4(+) T cells, Th17 cells, have a key role in coordinating the inflammatory immune responses that afford protection to pathogens at the mucosal interface. Balancing this powerful inflammatory response, regulatory T cells limit collateral damage and provide antigen-specific tolerance to both food and microbial antigens. Here, we discuss the implications for how the microbiota as a whole contributes to compartmentalization from the host and how individual constituents of the microbiota influence the functions and repertoire of effector T cells and organ-specific autoimmune disease.


Nature | 2016

Corrigendum: DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions.

Wendy Huang; Benjamin Thomas; Ryan A. Flynn; Samuel J. Gavzy; Lin Wu; Sangwon V. Kim; Jason A. Hall; Emily R. Miraldi; Charles Ng; Frank Rigo; Sarah Meadows; Nina R. Montoya; Natalia G. Herrera; Ana I. Domingos; Fraydoon Rastinejad; Richard M. Myers; Frances V. Fuller-Pace; Richard Bonneau; Howard Y. Chang; Oreste Acuto; Dan R. Littman

This corrects the article DOI: 10.1038/nature16193


Nature | 2018

Retraction Note: DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions

Wendy Huang; Benjamin Thomas; Ryan A. Flynn; Samuel J. Gavzy; Lin Wu; Sangwon V. Kim; Jason A. Hall; Emily R. Miraldi; Charles Ng; Frank Rigo; Sarah Meadows; Nina R. Montoya; Natalia G. Herrera; Ana I. Domingos; Fraydoon Rastinejad; Richard M. Myers; Frances V. Fuller-Pace; Richard Bonneau; Howard Y. Chang; Oreste Acuto; Dan R. Littman

Change History: This Article has been retracted; see accompanying Retraction. Corrected online 20 January: In this Article, author Frank Rigo was incorrectly listed with a middle initial; this has been corrected in the online versions of the paper.


Journal of The American Society of Nephrology | 2009

Disruption of Myosin 1e Promotes Podocyte Injury

Mira Krendel; Sangwon V. Kim; Tim Willinger; Tong Wang; Michael Kashgarian; Richard A. Flavell; Mark S. Mooseker


Science | 2006

Modulation of Cell Adhesion and Motility in the Immune System by Myo1f

Sangwon V. Kim; Wajahat Z. Mehal; Xuemei Dong; Volkmar Heinrich; Marc Pypaert; Ira Mellman; Micah Dembo; Mark S. Mooseker; Dianqing Wu; Richard A. Flavell

Collaboration


Dive into the Sangwon V. Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fraydoon Rastinejad

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar

Charles Ng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason A. Hall

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jun R. Huh

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lin Wu

New York University

View shared research outputs
Researchain Logo
Decentralizing Knowledge