Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanie Mnaimneh is active.

Publication


Featured researches published by Sanie Mnaimneh.


Cell | 2004

Exploration of Essential Gene Functions via Titratable Promoter Alleles

Sanie Mnaimneh; Armaity P. Davierwala; Jennifer Haynes; Jason Moffat; Wen-Tao Peng; Wen Zhang; Xueqi Yang; Jeff Pootoolal; Gordon Chua; Andres Lopez; Miles Trochesset; Darcy Morse; Nevan J. Krogan; Shawna L. Hiley; Zhijian Li; Quaid Morris; Jörg Grigull; Nicholas Mitsakakis; Christopher J. Roberts; Jack Greenblatt; Charles Boone; Chris A. Kaiser; Brenda Andrews; Timothy R. Hughes

Nearly 20% of yeast genes are required for viability, hindering genetic analysis with knockouts. We created promoter-shutoff strains for over two-thirds of all essential yeast genes and subjected them to morphological analysis, size profiling, drug sensitivity screening, and microarray expression profiling. We then used this compendium of data to ask which phenotypic features characterized different functional classes and used these to infer potential functions for uncharacterized genes. We identified genes involved in ribosome biogenesis (HAS1, URB1, and URB2), protein secretion (SEC39), mitochondrial import (MIM1), and tRNA charging (GSN1). In addition, apparent negative feedback transcriptional regulation of both ribosome biogenesis and the proteasome was observed. We furthermore show that these strains are compatible with automated genetic analysis. This study underscores the importance of analyzing mutant phenotypes and provides a resource to complement the yeast knockout collection.


Cell | 2008

Variation in homeodomain DNA-binding revealed by high-resolution analysis of sequence preferences

Michael F. Berger; Gwenael Badis; Andrew R. Gehrke; Shaheynoor Talukder; Anthony A. Philippakis; Lourdes Peña-Castillo; Trevis M. Alleyne; Sanie Mnaimneh; Olga Botvinnik; Esther T. Chan; Faiqua Khalid; Wen Zhang; Daniel E. Newburger; Savina A. Jaeger; Quaid Morris; Martha L. Bulyk; Timothy R. Hughes

Most homeodomains are unique within a genome, yet many are highly conserved across vast evolutionary distances, implying strong selection on their precise DNA-binding specificities. We determined the binding preferences of the majority (168) of mouse homeodomains to all possible 8-base sequences, revealing rich and complex patterns of sequence specificity and showing that there are at least 65 distinct homeodomain DNA-binding activities. We developed a computational system that successfully predicts binding sites for homeodomain proteins as distant from mouse as Drosophila and C. elegans, and we infer full 8-mer binding profiles for the majority of known animal homeodomains. Our results provide an unprecedented level of resolution in the analysis of this simple domain structure and suggest that variation in sequence recognition may be a factor in its functional diversity and evolutionary success.


Molecular Cell | 2008

A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters

Gwenael Badis; Esther T. Chan; Harm van Bakel; Lourdes Peña-Castillo; Desiree Tillo; Kyle Tsui; Clayton D. Carlson; Andrea J. Gossett; Michael J. Hasinoff; Christopher L. Warren; Marinella Gebbia; Shaheynoor Talukder; Ally Yang; Sanie Mnaimneh; Dimitri Terterov; David Coburn; Ai Li Yeo; Zhen Xuan Yeo; Neil D. Clarke; Jason D. Lieb; Aseem Z. Ansari; Corey Nislow; Timothy R. Hughes

The sequence specificity of DNA-binding proteins is the primary mechanism by which the cell recognizes genomic features. Here, we describe systematic determination of yeast transcription factor DNA-binding specificities. We obtained binding specificities for 112 DNA-binding proteins representing 19 distinct structural classes. One-third of the binding specificities have not been previously reported. Several binding sequences have striking genomic distributions relative to transcription start sites, supporting their biological relevance and suggesting a role in promoter architecture. Among these are Rsc3 binding sequences, containing the core CGCG, which are found preferentially approximately 100 bp upstream of transcription start sites. Mutation of RSC3 results in a dramatic increase in nucleosome occupancy in hundreds of proximal promoters containing a Rsc3 binding element, but has little impact on promoters lacking Rsc3 binding sequences, indicating that Rsc3 plays a broad role in targeting nucleosome exclusion at yeast promoters.


Molecular Cell | 2004

High-definition macromolecular composition of yeast RNA-processing complexes.

Nevan J. Krogan; Wen-Tao Peng; Gerard Cagney; Mark D. Robinson; Robin Haw; Gouqing Zhong; Xinghua Guo; Xin Zhang; Veronica Canadien; Dawn Richards; Bryan Beattie; Atanas Lalev; Wen Zhang; Armaity P. Davierwala; Sanie Mnaimneh; Andrei Starostine; Aaron Tikuisis; Jörg Grigull; Nira Datta; James E. Bray; Timothy R. Hughes; Andrew Emili; Jack Greenblatt

A remarkably large collection of evolutionarily conserved proteins has been implicated in processing of noncoding RNAs and biogenesis of ribonucleoproteins. To better define the physical and functional relationships among these proteins and their cognate RNAs, we performed 165 highly stringent affinity purifications of known or predicted RNA-related proteins from Saccharomyces cerevisiae. We systematically identified and estimated the relative abundance of stably associated polypeptides and RNA species using a combination of gel densitometry, protein mass spectrometry, and oligonucleotide microarray hybridization. Ninety-two discrete proteins or protein complexes were identified comprising 489 different polypeptides, many associated with one or more specific RNA molecules. Some of the pre-rRNA-processing complexes that were obtained are discrete sub-complexes of those previously described. Among these, we identified the IPI complex required for proper processing of the ITS2 region of the ribosomal RNA primary transcript. This study provides a high-resolution overview of the modular topology of noncoding RNA-processing machinery.


Molecular and Cellular Biology | 2004

Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors

Jörg Grigull; Sanie Mnaimneh; Jeffrey Pootoolal; Mark D. Robinson; Timothy R. Hughes

ABSTRACT Using DNA microarrays, we compared global transcript stability profiles following chemical inhibition of transcription to rpb1-1 (a temperature-sensitive allele of yeast RNA polymerase II). Among the five inhibitors tested, the effects of thiolutin and 1,10-phenanthroline were most similar to rpb1-1. A comparison to various microarray data already in the literature revealed similarity between mRNA stability profiles and the transcriptional response to stresses such as heat shock, consistent with the fact that the general stress response includes a transient shutoff of general mRNA transcription. Genes encoding factors involved in rRNA synthesis and ribosome assembly, which are often observed to be coordinately down-regulated in yeast microarray data, were among the least stable transcripts. We examined the effects of deletions of genes encoding deadenylase components Ccr4p and Pan2p and putative RNA-binding proteins Pub1p and Puf4p on the genome-wide pattern of mRNA stability after inhibition of transcription by chemicals and/or heat stress. This examination showed that Ccr4p, the major yeast mRNA deadenylase, contributes to the degradation of transcripts encoding both ribosomal proteins and rRNA synthesis and ribosome assembly factors and mediates a large part of the transcriptional response to heat stress. Pan2p and Puf4p also contributed to the degradation rate of these mRNAs following transcriptional shutoff, while Pub1p preferentially stabilized transcripts encoding ribosomal proteins. Our results indicate that the abundance of ribosome biogenesis factors is controlled at the level of mRNA stability.


Cell | 2003

A Panoramic View of Yeast Noncoding RNA Processing

Wen Tao Peng; Mark D. Robinson; Sanie Mnaimneh; Nevan J. Krogan; Gerard Cagney; Quaid Morris; Armaity P. Davierwala; Jörg Grigull; Xueqi Yang; Wen Zhang; Nicholas Mitsakakis; Owen Ryan; Nira Datta; Vladimir Jojic; Chris Pal; Veronica Canadien; Dawn Richards; Bryan Beattie; Lani F. Wu; Steven J. Altschuler; Sam T. Roweis; Brendan J. Frey; Andrew Emili; Jack Greenblatt; Timothy R. Hughes

Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most of which have not previously been associated with RNA or RNP synthesis. Many strains mutated in uncharacterized genes displayed aberrant noncoding RNA profiles. Ten factors involved in noncoding RNA biogenesis were verified by further experimentation, including a protein required for 20S pre-rRNA processing (Tsr2p), a protein associated with the nuclear exosome (Lrp1p), and a factor required for box C/D snoRNA accumulation (Bcd1p). These data present a global view of yeast noncoding RNA processing and confirm that many currently uncharacterized yeast proteins are involved in biogenesis of noncoding RNA.


Nature Genetics | 2005

The synthetic genetic interaction spectrum of essential genes

Armaity P. Davierwala; Jennifer Haynes; Zhijian Li; Renee L. Brost; Mark D. Robinson; Lisa Yu; Sanie Mnaimneh; Huiming Ding; Hongwei Zhu; Yiqun Chen; Xin Cheng; Grant W. Brown; Charles Boone; Brenda Andrews; Timothy R. Hughes

The nature of synthetic genetic interactions involving essential genes (those required for viability) has not been previously examined in a broad and unbiased manner. We crossed yeast strains carrying promoter-replacement alleles for more than half of all essential yeast genes to a panel of 30 different mutants with defects in diverse cellular processes. The resulting genetic network is biased toward interactions between functionally related genes, enabling identification of a previously uncharacterized essential gene (PGA1) required for specific functions of the endoplasmic reticulum. But there are also many interactions between genes with dissimilar functions, suggesting that individual essential genes are required for buffering many cellular processes. The most notable feature of the essential synthetic genetic network is that it has an interaction density five times that of nonessential synthetic genetic networks, indicating that most yeast genetic interactions involve at least one essential gene.


Cell Reports | 2014

Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana.

Alessandra M Sullivan; Andrej A Arsovski; Janne Lempe; Kerry L. Bubb; Matthew T. Weirauch; Peter J. Sabo; Richard Sandstrom; Robert E. Thurman; Shane Neph; Alex Reynolds; Andrew B. Stergachis; Benjamin Vernot; Audra K. Johnson; Eric Haugen; Shawn T. Sullivan; Agnieszka Thompson; Fidencio V. Neri; Molly Weaver; Morgan Diegel; Sanie Mnaimneh; Ally Yang; Timothy R. Hughes; Jennifer L. Nemhauser; Christine Queitsch; John A. Stamatoyannopoulos

Our understanding of gene regulation in plants is constrained by our limited knowledge of plant cis-regulatory DNA and its dynamics. We mapped DNase I hypersensitive sites (DHSs) in A. thaliana seedlings and used genomic footprinting to delineate ∼ 700,000 sites of in vivo transcription factor (TF) occupancy at nucleotide resolution. We show that variation associated with 72 diverse quantitative phenotypes localizes within DHSs. TF footprints encode an extensive cis-regulatory lexicon subject to recent evolutionary pressures, and widespread TF binding within exons may have shaped codon usage patterns. The architecture of A. thaliana TF regulatory networks is strikingly similar to that of animals in spite of diverged regulatory repertoires. We analyzed regulatory landscape dynamics during heat shock and photomorphogenesis, disclosing thousands of environmentally sensitive elements and enabling mapping of key TF regulatory circuits underlying these fundamental responses. Our results provide an extensive resource for the study of A. thaliana gene regulation and functional biology.


Nature Biotechnology | 2015

C2H2 zinc finger proteins greatly expand the human regulatory lexicon

Hamed Shateri Najafabadi; Sanie Mnaimneh; Frank W. Schmitges; Michael Garton; Kathy N. Lam; Ally Yang; Mihai Albu; Matthew T. Weirauch; Ernest Radovani; Philip M. Kim; Jack Greenblatt; Brendan J. Frey; Timothy R. Hughes

Cys2-His2 zinc finger (C2H2-ZF) proteins represent the largest class of putative human transcription factors. However, for most C2H2-ZF proteins it is unknown whether they even bind DNA or, if they do, to which sequences. Here, by combining data from a modified bacterial one-hybrid system with protein-binding microarray and chromatin immunoprecipitation analyses, we show that natural C2H2-ZFs encoded in the human genome bind DNA both in vitro and in vivo, and we infer the DNA recognition code using DNA-binding data for thousands of natural C2H2-ZF domains. In vivo binding data are generally consistent with our recognition code and indicate that C2H2-ZF proteins recognize more motifs than all other human transcription factors combined. We provide direct evidence that most KRAB-containing C2H2-ZF proteins bind specific endogenous retroelements (EREs), ranging from currently active to ancient families. The majority of C2H2-ZF proteins, including KRAB proteins, also show widespread binding to regulatory regions, indicating that the human genome contains an extensive and largely unstudied adaptive C2H2-ZF regulatory network that targets a diverse range of genes and pathways.


Molecular and Cellular Biology | 2004

RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits.

Célia Jeronimo; Marie-France Langelier; Mahel Zeghouf; Marilena Cojocaru; Dominique Bergeron; Dania Baali; Diane Forget; Sanie Mnaimneh; Armaity P. Davierwala; Jeff Pootoolal; Mark Chandy; Veronica Canadien; Bryan Beattie; Dawn Richards; Jerry L. Workman; Timothy Hughes; Jack Greenblatt; Benoit Coulombe

ABSTRACT We have programmed human cells to express physiological levels of recombinant RNA polymerase II (RNAPII) subunits carrying tandem affinity purification (TAP) tags. Double-affinity chromatography allowed for the simple and efficient isolation of a complex containing all 12 RNAPII subunits, the general transcription factors TFIIB and TFIIF, the RNAPII phosphatase Fcp1, and a novel 153-kDa polypeptide of unknown function that we named RNAPII-associated protein 1 (RPAP1). The TAP-tagged RNAPII complex is functionally active both in vitro and in vivo. A role for RPAP1 in RNAPII transcription was established by shutting off the synthesis of Ydr527wp, a Saccharomyces cerevisiae protein homologous to RPAP1, and demonstrating that changes in global gene expression were similar to those caused by the loss of the yeast RNAPII subunit Rpb11. We also used TAP-tagged Rpb2 with mutations in fork loop 1 and switch 3, two structural elements located strategically within the active center, to start addressing the roles of these elements in the interaction of the enzyme with the template DNA during the transcription reaction.

Collaboration


Dive into the Sanie Mnaimneh's collaboration.

Top Co-Authors

Avatar

Ally Yang

University of Toronto

View shared research outputs
Top Co-Authors

Avatar

Matthew T. Weirauch

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Zhang

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge