Sanjai J. Parikh
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanjai J. Parikh.
Science | 2013
Sebastian E. Winter; Maria G. Winter; Mariana N. Xavier; Parameth Thiennimitr; Victor Poon; A. Marijke Keestra; Richard C. Laughlin; Gabriel Gomez; Jing Wu; Sara D. Lawhon; Ina E. Popova; Sanjai J. Parikh; L. Garry Adams; Renée M. Tsolis; Valley Stewart; Andreas J. Bäumler
E. coli kNOws How to Win The harmonious existence among the various microbial inhabitants of the gut is critical for good health. However, inflammation from injury or inflammatory bowel disease, can disrupt this balance and lead to the outgrowth of particular bacteria. The outgrowth of members of the Enterobacteriaceae family, which includes Escherichia coli, is often observed. Because E. coli are facultative rather an obligate anaerobes, Winter et al. (p. 708) postulated that they may be able to use by-products of reactive oxygen and nitrogen species, which are produced during inflammation, for anaerobic respiration, thereby edging out other fermenting bacteria. Indeed, in two mouse models of colitis and in a model of intestinal injury, various E. coli strains were able to use host-derived nitrate as an energy source and outcompete mutant strains unable to do this. During inflammation, Escherichia coli uses nitrate respiration to gain a growth advantage over other gut bacteria. Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration.
Journal of Agricultural and Food Chemistry | 2013
Fungai N.D. Mukome; Xiaoming Zhang; Lucas C. R. Silva; Johan Six; Sanjai J. Parikh
Studies have shown that pyrolysis method and temperature are the key factors influencing biochar chemical and physical properties; however, information on the nature of biochar feedstocks is more accessible to consumers, making feedstock a better measure for selecting biochars. This study characterizes physical and chemical properties of commercially available biochars and investigates trends in biochar properties related to feedstock material to develop guidelines for biochar use. Twelve biochars were analyzed for physical and chemical properties. Compiled data from this study and from the literature (n = 85) were used to investigate trends in biochar characteristics related to feedstock. Analysis of compiled data reveals that despite clear differences in biochar properties from feedstocks of algae, grass, manure, nutshells, pomace, and wood (hard- and softwoods), characteristic generalizations can be made. Feedstock was a better predictor of biochar ash content and C/N ratio, but surface area was also temperature dependent for wood-derived biochar. Significant differences in ash content (grass and manure > wood) and C/N ratio (softwoods > grass and manure) enabled the first presentation of guidelines for biochar use based on feedstock material.
Geomicrobiology Journal | 2005
Sanjai J. Parikh; Jon Chorover
Biomineralization in heterogeneous aqueous systems results from a complex association between pre-existing surfaces, bacterial cells, extracellular biomacromolecules, and neoformed precipitates. Fourier transform infrared (FTIR) spectroscopy was used in several complementary sample introduction modes (attenuated total reflectance [ATR], diffuse reflectance [DRIFT], and transmission) to investigate the processes of cell adhesion, biofilm growth, and biological Mn-oxidation by Pseudomonas putida strain GB-1. Distinct differences in the adhesive properties of GB-1 were observed upon Mn oxidation. No adhesion to the ZnSe crystal surface was observed for planktonic GB-1 cells coated with biogenic MnO x , whereas cell adhesion was extensive and a GB-1 biofilm was readily grown on ZnSe, CdTe, and Ge crystals prior to Mn-oxidation. IR peak intensity ratios reveal changes in biomolecular (carbohydrate, phosphate, and protein) composition during biologically catalyzed Mn-oxidation. In situ monitoring via ATR-FTIR of an active GB-1 biofilm and DRIFT data revealed an increase in extracellular protein (amide I and II) during Mn(II) oxidation, whereas transmission mode measurements suggest an overall increase in carbohydrate and phosphate moieties. The FTIR spectrum of biogenic Mn oxide comprises Mn-O stretching vibrations characteristic of various known Mn oxides (e.g., “acid” birnessite, romanechite, todorokite), but it is not identical to known synthetic solids, possibly because of solid-phase incorporation of biomolecular constituents. The results suggest that, when biogenic MnO x accumulates on the surfaces of planktonic cells, adhesion of the bacteria to other negatively charged surfaces is hindered via blocking of surficial proteins.
Environmental Science & Technology | 2010
Mengqiang Zhu; Matthew Ginder-Vogel; Sanjai J. Parikh; Xionghan Feng; Donald L. Sparks
Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO(x)) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H(+), Ni(II), Na(+), and Ca(2+)) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO(x) using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO(x) formation. Specifically, H(+) and Ni(II) enhance vacant site formation, whereas Na(+) and Ca(2+) favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO(x) and dependence of the crystal structure of BioMnO(x) on solution chemistry.
Advances in Agronomy | 2010
Anthony T. O'Geen; R. Budd; J. Gan; J.J. Maynard; Sanjai J. Parikh; Randy A. Dahlgren
Abstract Nonpoint source pollution (NPSP) from agricultural runoff threatens drinking water quality, aquatic habitats, and a variety of other beneficial uses of water resources. Agricultural runoff often contains a suite of water-quality contaminants, such as nutrients, pesticides, pathogens, sediment, salts, trace metals, and substances, contributing to biological oxygen demand. Increasingly, growers who discharge agricultural runoff must comply with water-quality regulations and implement management practices to reduce NPSP. Constructed and restored wetlands are one of many best management practices that growers can employ to address this problem. This review focuses on the ability of constructed and restored wetlands to mitigate a variety of water-quality contaminants common to most agricultural landscapes. We found that constructed and restored wetlands remove or retain many water-quality contaminants in agricultural runoff if carefully designed and managed. Contaminant removal efficiency generally exceeded 50% for sediment, nitrate, microbial pathogens, particulate phosphorus, hydrophobic pesticides, and selected trace elements when wetlands were placed in the correct settings. There are some potentially adverse effects of constructed and restored wetlands that must be considered, including accumulation of mercury and selenium, increased salinity, mosquito habitat, and greenhouse gas emissions. Proper wetland management and design features are discussed in order to reduce these adverse effects, while optimizing contaminant removal.
Advances in Agronomy | 2014
Sanjai J. Parikh; Keith W. Goyne; Andrew J. Margenot; Fungai N.D. Mukome; Francisco J. Calderón
Vibrational spectroscopy techniques provide a powerful approach to the study of environmental materials and processes. These multifunctional analytical tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and examining kinetic processes. Although Fourier transform infrared (FTIR) spectroscopy is the most prominent type of vibrational spectroscopy used in the field of soil science, applications of Raman spectroscopy to study environmental samples continue to increase. The ability of FTIR and Raman spectroscopies to provide complementary information for organic and inorganic materials makes them ideal approaches for soil science research. In addition, the ability to conduct in situ, real time, vibrational spectroscopy experiments to probe biogeochemical processes at mineral interfaces offers unique and versatile methodologies for revealing a myriad of soil chemical phenomena. This review provides a comprehensive overview of vibrational spectroscopy techniques and highlights many of the applications of their use in soil chemistry research.
Journal of Colloid and Interface Science | 2008
Sanjai J. Parikh; Brandon J. Lafferty; Donald L. Sparks
This study presents a methodology for studying rapid kinetic reactions for IR active compounds. In soils, sediments, and groundwater systems a rapid initial chemical reaction can comprise a substantial portion of the total reaction process at the mineral/water interface. Rapid-scan attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy is presented here as a new method for collecting rapid in situ kinetic data. As an example of its application, the initial oxidation of arsenite (As III) via Mn-oxides is examined. Using a rapid-scan technique, IR spectra were collected with a time resolution of up to 2.55 s (24 scans, 8 cm(-1) resolution). Through observation and analysis of IR bands corresponding to arsenate (AsV), rapid chemically-controlled As III oxidation is observed (initial pH 6-9) with 50% of the reaction occurring within the first one min. The oxidation of As III is followed by rapid binding of AsV to HMO, at least in part, through surface bound Mn II. The experimental data indicate that rapid-scan FTIR is an effective technique for acquisition of kinetic data, providing molecular scale information for rapid reactions at the solid/liquid interface.
Environmental Science & Technology | 2010
Sanjai J. Parikh; Brandon J. Lafferty; Terry G. Meade; Donald L. Sparks
The oxidation of arsenite (As(III)) via Mn-oxides is an important process for natural arsenic (As) cycling and for developing in situ strategies for remediation of As-contaminated waters. In this study, the influence of goethite (alpha-FeOOH), phosphate, and bacteria/biopolymer coatings on the initial As(III) oxidation kinetics by a hydrous Mn-oxide (delta-MnO(2)) is examined via both batch experiments and rapid scan ATR-spectroscopy. Under natural conditions the presence of various mineral surfaces, bacteria, organic matter, and ions in solution can block Mn-oxide reaction sites, alter reaction rates, and thus inhibit As(III) oxidation. Previous studies of As-Mn systems demonstrate rapid oxidation of As(III), catalyzed by Mn-oxides, producing less toxic and mobile arsenate (As(V)). Subsequent to oxidation, reaction products from reductive dissolution of delta-MnO(2) by As(III), bind to and passivate the mineral surface. This study demonstrates enhanced passivation through interaction with phosphate and bacteria. Increased As oxidation with high concentrations of goethite is observed, attributed to As(V) sorption to alpha-FeOOH and diminished surface passivation of delta-MnO(2). Specific competition between phosphate and As(V) for delta-MnO(2) was confirmed through diminished As sorption and decreased As(V) production when oxidation occurred in the presence of phosphate. Kinetic experiments reveal that the extent of initial As(III) oxidation in the presence of low phosphate and alpha-FeOOH concentration is reduced; however, initial reaction rates are generally not affected. Reaction rates are reduced when bacterial adhesion and high phosphate concentrations strongly passivate delta-MnO(2) and reduce As(III) interactions with the mineral surface. The data presented in this study highlight the importance of considering natural heterogeneity when investigating reaction mechanisms and initial reaction kinetics.
European Journal of Pharmaceutics and Biopharmaceutics | 2014
Monika Kaur; Kevin B. Ita; Inna E. Popova; Sanjai J. Parikh; Daniel A. Bair
The aim of this project was to study the effect of stainless steel solid microneedles and microneedle rollers on percutaneous penetration of verapamil hydrochloride and amlodipine besylate. Verapamil, 2-(3,4-dimethooxyphenyl)-5-[2-(3,4 dimethoxyphenyl)ethyl-methyl-amino]-2-propan-2-yl-pentanenitrile is a calcium channel blocker agent that regulates high blood pressure by decreasing myocardial contractilty, heart rate and impulse conduction. Amlodipine, (R, S)-2-[(2-aminoethoxy) methyl]-4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1, 4-dihydropyridine, is a calcium channel blocker that is used for the management of hypertension and ischemic heart disease. Passive penetration of verapamil and amlodipine across the skin is low. In vitro studies were performed with microneedle-treated porcine ear skin using vertical static Franz diffusion cells (PermeGear, Hellertown, PA, USA). The receiver chamber contained 5ml of PBS (pH7.4) and was constantly maintained at 37°C temperature with a water circulation jacket. The diffusion area of the skin was 1.77cm(2). The donor compartment was loaded with 1ml of the solution containing 2.5mg/ml of amlodipine besylate. The donor chamber was covered with parafilm to avoid evaporation. Passive diffusion across untreated porcine skin served as control. Aliquots were taken every 2h for 12h and analyzed by liquid chromatography-mass spectrometry. Transcutaneous flux of verapamil increased significantly from 8.75μg/cm(2)/h to 49.96μg/cm(2)/h across microneedle-roller treated porcine skin. Percutaneous flux of amlodipine besylate following the use of stainless steel microneedles was 22.39μg/cm(2)/h. Passive flux for the drug was 1.57μg/cm(2)/h. This enhancement of amlodipine flux was statistically significant. Transdermal flux of amlodipine with microneedle roller was 1.05μg/cm(2)/h in comparison with passive diffusion flux of 0.19μg/cm(2)/h. The difference in flux values was also statistically significant. Stainless steel solid microneedles and microneedle rollers increased percutaneous penetration of verapamil hydrochloride and amlodipine besylate. It may be feasible to develop transdermal microneedle patches for these drugs.
Environmental Science & Technology | 2010
Masayuki Shimizu; Matthew Ginder-Vogel; Sanjai J. Parikh; Donald L. Sparks
Methylated forms of arsenic (As), monomethylarsenate (MMA) and dimethylarsenate (DMA), have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the sorption of methylated As to soil constituents requires investigation. MMA and DMA sorption on amorphous aluminum oxide (AAO) was investigated using both macroscopic batch sorption kinetics and molecular scale extended X-ray absorption fine structure (EXAFS) and Fourier transform infrared (FTIR) spectroscopic techniques. Sorption isotherm studies revealed sorption maxima of 0.183, 0.145, and 0.056 mmol As/mmol Al for arsenate (As(V)), MMA, and DMA, respectively. In the sorption kinetics studies, 100% of added As(V) was sorbed within 5 min, while 78% and 15% of added MMA and DMA were sorbed, respectively. Desorption experiments, using phosphate as a desorbing agent, resulted in 30% release of absorbed As(V), while 48% and 62% of absorbed MMA and DMA, respectively, were released. FTIR and EXAFS studies revealed that MMA and DMA formed mainly bidentate binuclear complexes with AAO. On the basis of these results, it is proposed that increasing methyl group substitution results in decreased As sorption and increased As desorption on AAO.