Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjay Vashee is active.

Publication


Featured researches published by Sanjay Vashee.


Science | 2010

CREATION OF A BACTERIAL CELL CONTROLLED BY A CHEMICALLY SYNTHESIZED GENOME

Daniel G. Gibson; John I. Glass; Carole Lartigue; Vladimir N. Noskov; Ray-Yuan Chuang; Mikkel A. Algire; Gwynedd A. Benders; Michael G. Montague; Li Ma; Monzia Moodie; Chuck Merryman; Sanjay Vashee; Radha Krishnakumar; Nacyra Assad-Garcia; Cynthia Andrews-Pfannkoch; Evgeniya A. Denisova; Lei Young; Zhi-Qing Qi; Thomas H. Segall-Shapiro; Christopher H. Calvey; Prashanth P. Parmar; Clyde A. Hutchison; Hamilton O. Smith; J. Craig Venter

Let There Be Life The DNA sequence information from thousands of genomes is stored digitally as ones and zeros in computer memory. Now, Gibson et al. (p. 52, published online 20 May; see the cover; see the Policy Forum by Cho and Relman) have brought together technologies from the past 15 years to start from digital information on the genome of Mycoplasma mycoides to chemically synthesize the genomic DNA as segments that could then be assembled in yeast and transplanted into the cytoplasm of another organism. A number of methods were also incorporated to facilitate testing and error correction of the synthetic genome segments. The transplanted genome became established in the recipient cell, replacing the recipient genome, which was lost from the cell. The reconstituted cells were able to replicate and form colonies, providing a proof-of-principle for future developments in synthetic biology. A synthetic Mycoplasma mycoides genome transplanted into M. capricolum was able to control the host cell. We report the design, synthesis, and assembly of the 1.08–mega–base pair Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a M. capricolum recipient cell to create new M. mycoides cells that are controlled only by the synthetic chromosome. The only DNA in the cells is the designed synthetic DNA sequence, including “watermark” sequences and other designed gene deletions and polymorphisms, and mutations acquired during the building process. The new cells have expected phenotypic properties and are capable of continuous self-replication.


Science | 2009

Creating Bacterial Strains from Genomes That Have Been Cloned and Engineered in Yeast

Carole Lartigue; Sanjay Vashee; Mikkel A. Algire; Ray-Yuan Chuang; Gwynedd A. Benders; Li Ma; Vladimir N. Noskov; Evgeniya A. Denisova; Daniel G. Gibson; Nacyra Assad-Garcia; Nina Alperovich; David W. Thomas; Chuck Merryman; Clyde A. Hutchison; Hamilton O. Smith; J. Craig Venter; John I. Glass

Character Transplant When engineering bacteria, it can be advantageous to propagate the genomes in yeast. However, to be truly useful, one must be able to transplant the bacterial chromosome from yeast back into a recipient bacterial cell. But because yeast does not contain restriction-modification systems, such transplantation poses problems not encountered in transplantation from one bacterial cell to another. Bacterial genomes isolated after growth in yeast are likely to be susceptible to the restriction-modification system(s) of the recipient cell, as well as their own. Lartigue et al. (p. 1693, published online 20 August) describe multiple steps, including in vitro DNA methylation, developed to overcome such barriers. A Mycoplasma mycoides large-colony genome was propagated in yeast as a centromeric plasmid, engineered via yeast genetic systems, and, after specific methylation, transplanted into M. capricolum to produce a bacterial cell with the genotype and phenotype of the altered M. mycoides large-colony genome. A Mycoplasma mycoides genome was engineered in yeast and then transplanted into M. capricolum cells to produce a new strain. We recently reported the chemical synthesis, assembly, and cloning of a bacterial genome in yeast. To produce a synthetic cell, the genome must be transferred from yeast to a receptive cytoplasm. Here we describe methods to accomplish this. We cloned a Mycoplasma mycoides genome as a yeast centromeric plasmid and then transplanted it into Mycoplasma capricolum to produce a viable M. mycoides cell. While in yeast, the genome was altered by using yeast genetic systems and then transplanted to produce a new strain of M. mycoides. These methods allow the construction of strains that could not be produced with genetic tools available for this bacterium.


Nucleic Acids Research | 2010

Cloning whole bacterial genomes in yeast

Gwynedd A. Benders; Vladimir N. Noskov; Evgeniya A. Denisova; Carole Lartigue; Daniel G. Gibson; Nacyra Assad-Garcia; Ray-Yuan Chuang; William Carrera; Monzia Moodie; Mikkel A. Algire; Quang Phan; Nina Alperovich; Sanjay Vashee; Chuck Merryman; J. Craig Venter; Hamilton O. Smith; John I. Glass; Clyde A. Hutchison

Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules. We cloned the genomes of Mycoplasma genitalium (0.6 Mb), M. pneumoniae (0.8 Mb) and M. mycoides subspecies capri (1.1 Mb) as yeast circular centromeric plasmids. These genomes appear to be stably maintained in a host that has efficient, well-established methods for DNA manipulation.


Current Opinion in Biotechnology | 2012

Synthetic genomics: potential and limitations

Michael G. Montague; Carole Lartigue; Sanjay Vashee

Technologies to synthetically assemble chromosome sized fragments of DNA as well as to enable making thousands of simultaneous changes to existing genomes are now available. These capacities are collectively termed synthetic genomics. The implications of synthetic genomics extend beyond the limited pathway and gene engineering of the past to include the engineering or whole metabolisms, regulatory networks, and even ecosystems. However, in order for those potentials to be met, certain limitations and barriers must be overcome. These barriers no longer include DNA modification and assembly, but instead are based in the limited organisms that many synthetic genomics methods function in, and the limited software for designing custom genomic sequences.


ACS Synthetic Biology | 2016

In-Yeast Engineering of a Bacterial Genome Using CRISPR/Cas9

Iason Tsarmpopoulos; Géraldine Gourgues; Alain Blanchard; Sanjay Vashee; Joerg Jores; Carole Lartigue; Pascal Sirand-Pugnet

One remarkable achievement in synthetic biology was the reconstruction of mycoplasma genomes and their cloning in yeast where they can be modified using available genetic tools. Recently, CRISPR/Cas9 editing tools were developed for yeast mutagenesis. Here, we report their adaptation for the engineering of bacterial genomes cloned in yeast. A seamless deletion of the mycoplasma glycerol-3-phosphate oxidase-encoding gene (glpO) was achieved without selection in one step, using 90 nt paired oligonucleotides as templates to drive recombination. Screening of the resulting clones revealed that more than 20% contained the desired deletion. After manipulation, the overall integrity of the cloned mycoplasma genome was verified by multiplex PCR and PFGE. Finally, the edited genome was back-transplanted into a mycoplasma recipient cell. In accordance with the deletion of glpO, the mutant mycoplasma was affected in the production of H2O2. This work paves the way to high-throughput manipulation of natural or synthetic genomes in yeast.


Genome Research | 2015

Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling

Yo Suzuki; Nacyra Assad-Garcia; Maxim Kostylev; Vladimir N. Noskov; Kim S. Wise; Bogumil J. Karas; Jason Stam; Michael G. Montague; Timothy J. Hanly; Nico J. Enriquez; Adi Ramon; Gregory M. Goldgof; R. Alexander Richter; Sanjay Vashee; Ray-Yuan Chuang; Elizabeth A. Winzeler; Clyde A. Hutchison; Daniel G. Gibson; Hamilton O. Smith; John I. Glass; J. Craig Venter

The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmal genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ∼ 10% of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes.


Journal of Molecular Evolution | 2009

The Evolution of RecD Outside of the RecBCD Complex

Michael G. Montague; Christian Barnes; Hamilton O. Smith; Ray-Yuan Chuang; Sanjay Vashee

The common understanding of the function of RecD, as derived predominantly from studies in Escherichia coli, is that RecD is one of three enzymes in the RecBCD double-stranded break repair DNA recombination complex. However, comparative genomics has revealed that many organisms possess a recD gene even though the other members of the complex, recB and recC, are not present. Further, bioinformatic analyses have shown that there is substantial sequence dissimilarity between recD genes associated with recB and recC (recD1), and those that are not associated with recBC (recD2). Deinococcus radiodurans, known for its extraordinary DNA repair capability, is one such organism that does not possess either recB or recC, and yet does possess a recD gene. The recD of D. radiodurans was deleted and this mutant was shown to have a capacity to repair double-stranded DNA breaks equivalent to wild-type. The phylogenetic history of recD was studied using a dataset of 120 recD genes from 91 fully sequenced species. The analysis focused upon the role of gene duplication and functional genomic context in the evolution of recD2, which appears to have undergone numerous independent events resulting in duplicate recD2 genes. The role of RecD as part of the RecBCD complex appears to have a divergence from an earlier ancestral RecD function still preserved in many species including D. radiodurans.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods

Lauren M. Oldfield; Peter Grzesik; Alexander A. Voorhies; Nina Alperovich; Derek MacMath; Claudia D. Najera; Diya Sabrina Chandra; Sanjana Prasad; Vladimir N. Noskov; Michael G. Montague; Robert Friedman; Prashant Desai; Sanjay Vashee

Significance Viruses with large DNA genomes, such as herpesviruses, are difficult to manipulate with existing genetic tools. We describe an application of synthetic genomics assembly tools that enables rapid and efficient generation of combinatorial mutations in herpesvirus genomes. The method provides the capacity to design, generate, and test numerous multiloci mutants in parallel, which can help us understand basic virus biology, facilitate vaccine development, and aid development of next-generation virus-based delivery systems. This class of viruses is being used as vectors for therapeutics and vaccines, with an oncolytic herpesvirus approved for the treatment of melanoma. Although such improvements in genome assembly and manipulation raise dual-use concerns, we believe the potential benefits substantially outweigh the risks. Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.


Proceedings of the National Academy of Sciences of the United States of America | 2016

MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G.

Yonathan Arfi; Laetitia Minder; Carmelo Di Primo; Aline Le Roy; Christine Ebel; Laurent Coquet; Stéphane Claverol; Sanjay Vashee; Joerg Jores; Alain Blanchard; Pascal Sirand-Pugnet

Significance Mycoplasmas are minimal pathogenic bacteria able to infect humans and a wide range of economically important animals; as such, they are major causes of concern in the medical and veterinary fields. These pathogens often lead to chronic infections, and their mechanisms of immunity evasion are poorly known. Here we describe a two-protein system from the ruminant pathogen Mycoplasma mycoides subspecies capri that is involved in the capture and cleavage of antibodies. MIB is able to capture the antibodies and to subsequently recruit MIP, a protease that is able to cleave the antibody heavy chain. The MIB–MIP system appears to be widespread among pathogenic mycoplasmas and is potentially a key player for the virulence and immunity evasion mechanisms of these bacteria. Mycoplasmas are “minimal” bacteria able to infect humans, wildlife, and a large number of economically important livestock species. Mycoplasma infections include a spectrum of clinical manifestations ranging from simple fever to fulminant inflammatory diseases with high mortality rates. These infections are mostly chronic, suggesting that mycoplasmas have developed means to evade the host immune response. Here we present and functionally characterize a two-protein system from Mycoplasma mycoides subspecies capri that is involved in the capture and cleavage of IgG. The first component, Mycoplasma Ig binding protein (MIB), is an 83-kDa protein that is able to tightly bind to the Fv region of a wide range of IgG. The second component, Mycoplasma Ig protease (MIP), is a 97-kDa serine protease that is able to cleave off the VH domain of IgG. We demonstrate that MIB is necessary for the proteolytic activity of MIP. Cleavage of IgG requires a sequential interaction of the different partners of the system: first MIB captures the IgG, and then MIP is recruited to the MIB–IgG complex, enabling protease activity. MIB and MIP are encoded by two genes organized in tandem, with homologs found in the majority of pathogenic mycoplasmas and often in multiple copies. Phylogenetic studies suggest that genes encoding the MIB–MIP system are specific to mycoplasmas and have been disseminated by horizontal gene transfer. These results highlight an original and complex system targeting the host immunoglobulins, playing a potentially key role in the immunity evasion by mycoplasmas.


Nucleic Acids Research | 2016

Impact of donor–recipient phylogenetic distance on bacterial genome transplantation

Fabien Labroussaa; Anne Lebaudy; Vincent Baby; Géraldine Gourgues; Dominick Matteau; Sanjay Vashee; Pascal Sirand-Pugnet; Sébastien Rodrigue; Carole Lartigue

Genome transplantation (GT) allows the installation of purified chromosomes into recipient cells, causing the resulting organisms to adopt the genotype and the phenotype conferred by the donor cells. This key process remains a bottleneck in synthetic biology, especially for genome engineering strategies of intractable and economically important microbial species. So far, this process has only been reported using two closely related bacteria, Mycoplasma mycoides subsp. capri (Mmc) and Mycoplasma capricolum subsp. capricolum (Mcap), and the main factors driving the compatibility between a donor genome and a recipient cell are poorly understood. Here, we investigated the impact of the evolutionary distance between donor and recipient species on the efficiency of GT. Using Mcap as the recipient cell, we successfully transplanted the genome of six bacteria belonging to the Spiroplasma phylogenetic group but including species of two distinct genera. Our results demonstrate that GT efficiency is inversely correlated with the phylogenetic distance between donor and recipient bacteria but also suggest that other species-specific barriers to GT exist. This work constitutes an important step toward understanding the cellular factors governing the GT process in order to better define and eventually extend the existing genome compatibility limit.

Collaboration


Dive into the Sanjay Vashee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John I. Glass

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Vladimir N. Noskov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray-Yuan Chuang

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

J. Craig Venter

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge