Sanjaya Kuruppu
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanjaya Kuruppu.
Nature | 2006
Bryan G. Fry; Nicolas Vidal; Janette A Norman; Freek J. Vonk; Holger Scheib; S. F. Ryan Ramjan; Sanjaya Kuruppu; Kim Fung; S. Blair Hedges; Michael K. Richardson; Wayne C. Hodgson; Vera Ignjatovic; Robyn Summerhayes; Elazar Kochva
Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-secreting glands on both the upper and lower jaws, whereas the advanced snakes and anguimorph lizards (including Monitor Lizards, Gila Monster and Beaded Lizard) have more derived venom systems characterized by the loss of the mandibular (lower) or maxillary (upper) glands. Demonstration that the snakes, iguanians and anguimorphs form a single clade provides overwhelming support for a single, early origin of the venom system in lizards and snakes. These results provide new insights into the evolution of the venom system in squamate reptiles and open new avenues for biomedical research and drug design using hitherto unexplored venom proteins.
Circulation | 2017
Francine Z. Marques; Erin Nelson; Po-Yin Chu; Duncan Horlock; April Fiedler; Mark Ziemann; Jian K. Tan; Sanjaya Kuruppu; Niwanthi W. Rajapakse; Assam El-Osta; Charles R. Mackay; David M. Kaye
Background: Dietary intake of fruit and vegetables is associated with lower incidence of hypertension, but the mechanisms involved have not been elucidated. Here, we evaluated the effect of a high-fiber diet and supplementation with the short-chain fatty acid acetate on the gut microbiota and the prevention of cardiovascular disease. Methods: Gut microbiome, cardiorenal structure/function, and blood pressure were examined in sham and mineralocorticoid excess–treated mice with a control diet, high-fiber diet, or acetate supplementation. We also determined the renal and cardiac transcriptome of mice treated with the different diets. Results: We found that high consumption of fiber modified the gut microbiota populations and increased the abundance of acetate-producing bacteria independently of mineralocorticoid excess. Both fiber and acetate decreased gut dysbiosis, measured by the ratio of Firmicutes to Bacteroidetes, and increased the prevalence of Bacteroides acidifaciens. Compared with mineralocorticoid-excess mice fed a control diet, both high-fiber diet and acetate supplementation significantly reduced systolic and diastolic blood pressures, cardiac fibrosis, and left ventricular hypertrophy. Acetate had similar effects and markedly reduced renal fibrosis. Transcriptome analyses showed that the protective effects of high fiber and acetate were accompanied by the downregulation of cardiac and renal Egr1, a master cardiovascular regulator involved in cardiac hypertrophy, cardiorenal fibrosis, and inflammation. We also observed the upregulation of a network of genes involved in circadian rhythm in both tissues and downregulation of the renin-angiotensin system in the kidney and mitogen-activated protein kinase signaling in the heart. Conclusions: A diet high in fiber led to changes in the gut microbiota that played a protective role in the development of cardiovascular disease. The favorable effects of fiber may be explained by the generation and distribution of one of the main metabolites of the gut microbiota, the short-chain fatty acid acetate. Acetate effected several molecular changes associated with improved cardiovascular health and function.
Molecular & Cellular Proteomics | 2010
Bryan G. Fry; Kelly L. Winter; Janette A Norman; Kim Roelants; Rob J.A. Nabuurs; Matthias J.P. van Osch; Wouter M. Teeuwisse; Louise van der Weerd; Judith McNaughtan; Hang Fai Kwok; Holger Scheib; Laura Greisman; Elazar Kochva; Laurence J. Miller; Fan Gao; John A. Karas; Denis B. Scanlon; Feng Lin; Sanjaya Kuruppu; Chris Shaw; Lily Wong; Wayne C. Hodgson
Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding domains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms.
Peptides | 2005
Suping Wen; David Wilson; Sanjaya Kuruppu; Michael L. J. Korsinczky; Joseph A. Hedrick; Ling Pang; Tim H. Szeto; Wayne C. Hodgson; Paul F. Alewood; Graham M. Nicholson
This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 (PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MIT1, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pig ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1muM, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors.
Critical Reviews in Toxicology | 2008
Sanjaya Kuruppu; A. Ian Smith; Geoffrey K. Isbister; Wayne C. Hodgson
Most of the medically important snakes in Papua New Guinea and Australia belong to the family Elapidae and are referred to as “Australo-Papuan” elapids. Neurotoxicity is often a life-threatening symptom of envenoming by these snakes; therefore, much attention has been paid to the isolation and detailed pharmacological and biochemical characterization of the presynaptic (β) and postsynaptic (α) neurotoxins from these elapid venoms. These studies have highlighted the potential for these toxins to be used as highly potent and selective probes for biomedical research and, perhaps, the potential for their use as lead compounds for the development of pharmaceutical agents. Historically, the potency of neurotoxins/crude venoms has been determined using murine LD50 (lethal dose) assays. However, a different rank order of potency often results when crude venoms/toxins are ranked based on their in vitro pharmacological parameters (e.g., t90 values). The lack of neurotoxicity following envenoming by brown snakes, despite the presence of a potent neurotoxin in their venom, has puzzled clinical toxinologists for years. This paradox also appears to include envenoming by the Stephens banded snake. Lastly, the in vitro studies examining the effectiveness of antivenoms as well as the potential for alternative compounds to reverse/prevent neurotoxicity are discussed. This review presents for the first time a detailed comparative analysis of the pharmacology and biochemistry of neurotoxins isolated from the Australo-Papuan elapids, placing emphasis on the time taken for onset of action, receptor binding parameters, reversibility, and the methods for determining potency.
Neuropharmacology | 2007
Natalie G. Lumsden; Yajnavalka Banerjee; R. Manjunatha Kini; Sanjaya Kuruppu; Wayne C. Hodgson
Colubrid snake venoms potentially represent a vast source of novel biological actives and structural motifs owing to their diverse phylogeny. The present study describes the identification of rufoxin, a neurotoxin from the venom of Rhamphiophis oxyrhynchus (Rufous beaked snake) which is a member of the African colubrid lineage, the psammophiines. Rufoxin (1 microM) displayed reversible post-synaptic neurotoxic activity as evidenced by significant inhibition of indirect twitches and responses to exogenous nicotinic agonists in the chick biventer cervicis nerve-muscle preparation. Rufoxin (0.1-1.0 microM) also caused a rightward parallel shift of cumulative concentration-response curves to carbachol (CCh; 0.6-80 microM) without a significant depression of the maximum response, suggestive of classical competitive antagonism at the skeletal muscle nicotinic receptor. Rufoxin lacks NH(2)-terminal sequence homology to previously identified snake venom toxins. This work indicates a wider distribution of neurotoxins across the advanced snake superfamily than previously described.
FEBS Letters | 2012
Sanjaya Kuruppu; A. Ian Smith
Endothelin Converting Enzyme‐1 (ECE‐1) plays a significant role in the regulation of vascular tone and hence blood pressure. It has also been implicated in the pathogenesis of cardiovascular diseases, female malignancies and Alzheimers disease. Four different isoforms of ECE‐1 exist and have varying degrees of distribution throughout the cell. Production of ET‐1 by ECE‐1 occurs at the cell surface and the expression and localisation of ECE‐1 is the rate limiting step in the production of ET‐1. This review looks at the current knowledge on ECE‐1 phosphorylation and other stimuli which act induce trafficking of ECE‐1 to the cell surface.
Peptides | 2006
Carol Clarke; Sanjaya Kuruppu; Shane Reeve; A. Ian Smith; Wayne C. Hodgson
This study describes the characterization of oxylepitoxin-1 (MW 6789), the first postsynaptic neurotoxin isolated from the venom of the Inland taipan (Oxyuranus microlepidotus), which is the most venomous snake in the world. Oxylepitoxin-1, purified using successive steps of size-exclusion and reverse phase-high performance liquid chromatography, produced concentration-dependent (0.3-1.0 microM) inhibition of nerve-mediated (0.1 Hz, 0.2 ms, supramaximal V) twitches of the chick biventer cervicis nerve-muscle preparation. Taipan antivenom (5units/ml) prevented the neurotoxic activity of whole venom (10 microg/ml), but had no significant effect on oxylepitoxin-1 (1 microM). The toxin-induced inhibition of nerve-mediated twitches was significantly reversed upon washing the tissue at 5 min intervals. Oxylepitoxin-1 (30-300 nM) displayed competitive antagonism at the skeletal muscle nicotinic receptor with a pA(2) value of 7.16+/-0.28 (i.e. approximately 10-fold more potent than tubocurarine). The venom had a high level of PLA(2) activity (765+/-73 micromol/min/mg) while oxylepitoxin-1 displayed no PLA(2) activity. Partial N-terminal sequencing of oxylepitoxin-1 shows high sequence identity (i.e. 93%) to postsynaptic toxins isolated from the venom of the closely related coastal taipan (Oxyuranus scutellatus scutellatus).
Physiological Reports | 2016
Beverly Giam; Po Yin Chu; Sanjaya Kuruppu; A. Ian Smith; Duncan Horlock; Helen Kiriazis; Xiao-Jun Du; David M. Kaye; Niwanthi W. Rajapakse
Oxidative stress plays a central role in the pathogenesis of heart failure. We aimed to determine whether the antioxidant N‐acetylcysteine can attenuate cardiac fibrosis and remodeling in a mouse model of heart failure. Minipumps were implanted subcutaneously in wild‐type mice (n = 20) and mice with cardiomyopathy secondary to cardiac specific overexpression of mammalian sterile 20‐like kinase 1 (MST‐1; n = 18) to administer N‐acetylcysteine (40 mg/kg per day) or saline for a period of 8 weeks. At the end of this period, cardiac remodeling and function was assessed via echocardiography. Fibrosis, oxidative stress, and expression of collagen types I and III were quantified in heart tissues. Cardiac perivascular and interstitial fibrosis were greater by 114% and 209%, respectively, in MST‐1 compared to wild type (P ≤ 0.001). In MST‐1 mice administered N‐acetylcysteine, perivascular and interstitial fibrosis were 40% and 57% less, respectively, compared to those treated with saline (P ≤ 0. 03). Cardiac oxidative stress was 119% greater in MST‐1 than in wild type (P < 0.001) and N‐acetylcysteine attenuated oxidative stress in MST‐1 by 42% (P = 0.005). These data indicate that N‐acetylcysteine can blunt cardiac fibrosis and related remodeling in the setting of heart failure potentially by reducing oxidative stress. This study provides the basis to investigate the role of N‐acetylcysteine in chronic heart failure.
Current Biology | 2017
Nicholas R. Casewell; Jeroen C. Visser; Kate Baumann; James Dobson; Han Han; Sanjaya Kuruppu; Michael Morgan; Anthony Romilio; Vera Weisbecker; Karine Mardon; Syed A. Ali; Jordan Debono; Ivan Koludarov; Ivo Que; Gavan M. Cooke; Amanda Nouwens; Wayne C. Hodgson; Simon C. Wagstaff; Karen L. Cheney; Irina Vetter; Louise van der Weerd; Michael K. Richardson; Bryan G. Fry
Venom systems have evolved on multiple occasions across the animal kingdom, and they can act as key adaptations to protect animals from predators [1]. Consequently, venomous animals serve as models for a rich source of mimicry types, as non-venomous species benefit from reductions in predation risk by mimicking the coloration, body shape, and/or movement of toxic counterparts [2-5]. The frequent evolution of such deceitful imitations provides notable examples of phenotypic convergence and are often invoked as classic exemplars of evolution by natural selection. Here, we investigate the evolution of fangs, venom, and mimetic relationships in reef fishes from the tribe Nemophini (fangblennies). Comparative morphological analyses reveal that enlarged canine teeth (fangs) originated at the base of the Nemophini radiation and have enabled a micropredatory feeding strategy in non-venomous Plagiotremus spp. Subsequently, the evolution of deep anterior grooves and their coupling to venom secretory tissue provide Meiacanthus spp. with toxic venom that they effectively employ for defense. We find that fangblenny venom contains a number of toxic components that have been independently recruited into other animal venoms, some of which cause toxicity via interactions with opioid receptors, and result in a multifunctional biochemical phenotype that exerts potent hypotensive effects. The evolution of fangblenny venom has seemingly led to phenotypic convergence via the formation of a diverse array of mimetic relationships that provide protective (Batesian mimicry) and predatory (aggressive mimicry) benefits to other fishes [2, 6]. Our results further our understanding of how novel morphological and biochemical adaptations stimulate ecological interactions in the natural world.