Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjeev Choudhary is active.

Publication


Featured researches published by Sanjeev Choudhary.


Molecular and Cellular Biology | 2008

RelA Ser276 Phosphorylation Is Required for Activation of a Subset of NF-κB-Dependent Genes by Recruiting Cyclin-Dependent Kinase 9/Cyclin T1 Complexes

David E. Nowak; Bing Tian; Mohammad Jamaluddin; Istvan Boldogh; Leoncio A. Vergara; Sanjeev Choudhary; Allan R. Brasier

ABSTRACT NF-κB plays a central role in cytokine-inducible inflammatory gene expression. Previously we empirically determined the identity of 92 members of the genetic network under direct NF-κB/RelA control that show marked heterogeneity in magnitude of transcriptional induction and kinetics of peak activation. To investigate this network further, we have applied a recently developed two-step chromatin immunoprecipitation assay that accurately reflects association and disassociation of RelA binding to its chromatin targets. Although inducible RelA binding occurs with similar kinetics on all NF-κB-dependent genes, serine 276 (Ser276)-phosphorylated RelA binding is seen primarily on a subset of genes that are rapidly induced by tumor necrosis factor (TNF), including Gro-β, interleukin-8 (IL-8), and IκBα. Previous work has shown that TNF-inducible RelA Ser276 phosphorylation is controlled by a reactive oxygen species (ROS)-protein kinase A signaling pathway. To further understand the role of phospho-Ser276 RelA in target gene expression, we inhibited its formation by ROS scavengers and antioxidants, treatments that disrupt phospho-Ser276 formation but not the translocation and DNA binding of nonphosphorylated RelA. Here we find that phospho-Ser276 RelA is required only for activation of IL-8 and Gro-β, with IκBα being unaffected. These data were confirmed in experiments using RelA−/− murine embryonic fibroblasts reconstituted with a RelA Ser276Ala mutation. In addition, we observe that phospho-Ser276 RelA binds the positive transcription elongation factor b (P-TEFb), a complex containing the cyclin-dependent kinase 9 (CDK-9) and cyclin T1 subunits. Inhibition of P-TEFb activity by short interfering RNA (siRNA)-mediated knockdown shows that the phospho-Ser276 RelA-P-TEFb complex is required for IL-8 and Gro-β gene activation but not for IκBα gene activation. These studies indicate that TNF induces target gene expression by heterogeneous mechanisms. One is mediated by phospho-Ser276 RelA formation and chromatin targeting of P-TEFb controlling polymerase II (Pol II) recruitment and carboxy-terminal domain phosphorylation on the IL-8 and Gro-β genes. The second involves a phospho-Ser276 RelA-independent activation of genes preloaded with Pol II, exemplified by the IκBα gene. Together, these data suggest that the binding kinetics, selection of genomic targets, and mechanisms of promoter induction by RelA are controlled by a phosphorylation code influencing its interactions with coactivators and transcriptional elongation factors.


Diabetes | 2011

Klotho Depletion Contributes to Increased Inflammation in Kidney of the db/db Mouse Model of Diabetes Via RelA (Serine)536 Phosphorylation

Yanhua Zhao; Srijita Banerjee; Nilay Dey; Wanda S. LeJeune; Partha S. Sarkar; Reynolds Brobey; Kevin P. Rosenblatt; Ronald G. Tilton; Sanjeev Choudhary

OBJECTIVE Klotho is an antiaging hormone present in the kidney that extends the lifespan, regulates kidney function, and modulates cellular responses to oxidative stress. We investigated whether Klotho levels and signaling modulate inflammation in diabetic kidneys. RESEARCH DESIGN AND METHODS Renal Klotho expression was determined by quantitative real-time PCR and immunoblot analysis. Primary mouse tubular epithelial cells were treated with methylglyoxalated albumin, and Klotho expression and inflammatory cytokines were measured. Nuclear factor (NF)-κB activation was assessed by treating human embryonic kidney (HEK) 293 and HK-2 cells with tumor necrosis factor (TNF)-α in the presence or absence of Klotho, followed by immunoblot analysis to evaluate inhibitor of κB (IκB)α degradation, IκB kinase (IKK) and p38 activation, RelA nuclear translocation, and phosphorylation. A chromatin immunoprecipitation assay was performed to analyze the effects of Klotho signaling on interleukin-8 and monocyte chemoattractant protein-1 promoter recruitment of RelA and RelA serine (Ser)536. RESULTS Renal Klotho mRNA and protein were significantly decreased in db/db mice, and a similar decline was observed in the primary cultures of mouse tubule epithelial cells treated with methylglyoxal-modified albumin. The exogenous addition of soluble Klotho or overexpression of membranous Klotho in tissue culture suppressed NF-κB activation and subsequent production of inflammatory cytokines in response to TNF-α stimulation. Klotho specifically inhibited RelA Ser536 phosphorylation as well as promoter DNA binding of this phosphorylated form of RelA without affecting IKK-mediated IκBα degradation, total RelA nuclear translocation, and total RelA DNA binding. CONCLUSIONS These findings suggest that Klotho serves as an anti-inflammatory modulator, negatively regulating the production of NF-κB–linked inflammatory proteins via a mechanism that involves phosphorylation of Ser536 in the transactivation domain of RelA.


Free Radical Biology and Medicine | 2002

Cellular lipid peroxidation end-products induce apoptosis in human lens epithelial cells.

Sanjeev Choudhary; Wenbo Zhang; Feng Zhou; Gerald A. Campbell; L.L. Chan; E.B Thompson; Naseem H. Ansari

Hydrogen peroxide (H(2)O(2)), an oxidant present in high concentrations in the aqueous humor of the elderly eyes, is known to impart toxicity to the lens---apoptosis being one of the toxic events. Since H(2)O(2) causes lipid peroxidation leading to the formation of reactive end-products, it is important to investigate whether the end-products of lipid peroxidation are involved in the oxidation-induced apoptosis in the lens. 4-Hydroxynonenal (HNE), a major cytotoxic end product of lipid peroxidation, has been shown to mediate oxidative stress-induced cell death in many cell types. It has been shown that HNE is cataractogenic in micromolar concentrations in vitro, however, the underlying mechanism is not yet clearly understood. In the present study we have demonstrated that H(2)O(2) and the lipid derived aldehydes, HNE and 4-hydroxyhexenal (HHE), can induce dose- and time-dependent loss of cell viability and a simultaneous increase in apoptosis involving activation of caspases such as caspase-1, -2, -3, and -8 in the cultured human lens epithelial cells. Interestingly, we observed that Z-VAD, a broad range inhibitor of caspases, conferred protection against H(2)O(2)- and HNE-induced apoptosis, suggesting the involvement of caspases in this apoptotic system. Using the cationic dye JC-1, early apoptotic changes were assessed following 5 h of HNE and H(2)O(2) insult. Though HNE exposure resulted in approximately 50% cells to undergo early apoptotic changes, no such changes were observed in H(2)O(2) treated cells during this period. Furthermore, apoptosis, as determined by quantifying the DNA fragmentation, was apparent at a much earlier time period by HNE as opposed to H(2)O(2). Taken together, the results demonstrate the apoptotic potential of the lipid peroxidation end-products and suggest that H(2)O(2)-induced apoptosis may be mediated by these end-products in the lens epithelium.


Journal of Virology | 2005

Respiratory Syncytial Virus Influences NF-κB-Dependent Gene Expression through a Novel Pathway Involving MAP3K14/NIK Expression and Nuclear Complex Formation with NF-κB2

Sanjeev Choudhary; Steve Boldogh; Roberto P. Garofalo; Mohammad Jamaluddin; Allan R. Brasier

ABSTRACT A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-κB-inducing kinase (NIK) in the activation of NF-κB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous ∼50-kDa NF-κB2 substrate. Because NIK associates with IKKα to mediate processing of the 100-kDa NF-κB2 precursor into its 52-kDa DNA binding isoform (“p52”), the effects of RSV on NIK complex formation with IKKα and NF-κB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKα, and both 100 kDa- and 52-kDa NF-κB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-κB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-κB2. Small interfering RNA-mediated NIK “knock-down” blocked RSV-inducible 52-kDa NF-κB2 processing and interfered with the early activation of a subset of NF-κB-dependent genes, indicating the importance of this activation pathway in the genomic NF-κB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-κB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKα and processed NF-κB2.


Diabetes | 2006

Diabetes-Induced Activation of Canonical and Noncanonical Nuclear Factor-κB Pathways in Renal Cortex

Jonathan M. Starkey; Sigmund J. Haidacher; Wanda S. LeJeune; Xiaoquan Zhang; Brian C. Tieu; Sanjeev Choudhary; Allan R. Brasier; Larry Denner; Ronald G. Tilton

Evidence of diabetes-induced nuclear factor-κB (NF-κB) activation has been provided with DNA binding assays or nuclear localization with immunohistochemistry, but few studies have explored mechanisms involved. We examined effects of diabetes on proteins comprising NF-κB canonical and noncanonical activation pathways in the renal cortex of diabetic mice. Plasma concentrations of NF-κB–regulated cytokines were increased after 1 month of hyperglycemia, but most returned to control levels or lower by 3 months, when the same cytokines were increased significantly in renal cortex. Cytosolic content of NF-κB canonical pathway proteins did not differ between experimental groups after 3 months of diabetes, while NF-κB noncanonical pathway proteins were affected, including increased phosphorylation of inhibitor of κB kinase-α and several fold increases in NF-κB–inducing kinase and RelB, which were predominantly located in tubular epithelial cells. Nuclear content of all NF-κB pathway proteins was decreased by diabetes, with the largest change in RelB and p50 (approximately twofold decrease). Despite this decrease, measurable increases in protein binding to DNA in diabetic versus control nuclear extracts were observed with electrophoretic mobility shift assay. These results provide evidence for chronic NF-κB activation in the renal cortex of db/db mice and suggest a novel, diabetes-linked mechanism involving both canonical and noncanonical NF-κB pathway proteins.


Journal of Virology | 2005

Respiratory Syncytial Virus-Inducible BCL-3 Expression Antagonizes the STAT/IRF and NF-κB Signaling Pathways by Inducing Histone Deacetylase 1 Recruitment to the Interleukin-8 Promoter

Mohammad Jamaluddin; Sanjeev Choudhary; Shaofei Wang; Antonella Casola; Ruksana Huda; Roberto P. Garofalo; Sutapa Ray; Allan R. Brasier

ABSTRACT Respiratory syncytial virus (RSV) is a paramyxovirus that produces airway inflammation, in part by inducing interleukin-8 (IL-8) expression, a CXC-type chemokine, via the NF-κB/RelA and STAT/IRF signaling pathways. In RSV-infected A549 cells, IL-8 transcription attenuates after 24 h in spite of ongoing viral replication and persistence of nuclear RelA, suggesting a mechanism for transcriptional attenuation. RSV infection induces B-cell lymphoma protein -3 (Bcl-3) expression 6 to 12 h after viral infection, at times when IL-8 transcription is inhibited. By contrast, 293 cells, deficient in inducible Bcl-3 expression, show no attenuation of IL-8 transcription. We therefore examined Bcl-3s role in terminating virus-inducible IL-8 transcription. Transient expression of Bcl-3 potently inhibited virus-inducible IL-8 transcription by disrupting both the NF-κB and STAT/IRF pathways. Although previously Bcl-3 was thought to capture 50-kDa NF-κB1 isoforms in the cytoplasm, immunoprecipitation (IP) and electrophoretic mobility shift assays indicate that nuclear Bcl-3 associates with NF-κB1 without affecting DNA binding. Additionally, Bcl-3 potently inhibited the STAT/IRF pathway. Nondenaturing co-IP assays indicate that nuclear Bcl-3 associates with STAT-1 and histone deacetylase 1 (HDAC-1), increasing HDAC-1 recruitment to the IL-8 promoter. Treatment with the HDAC inhibitor trichostatin A blocks attenuation of IL-8 transcription. A nuclear targeting-deficient Bcl-3 is unable to enhance HDAC-1-mediated chemokine repression. Finally, small inhibitory RNA-mediated Bcl-3 “knockdown” resulted in enhanced RSV-induced chemokine expression in A549 cells. These data indicate that Bcl-3 is a virus-inducible inhibitor of chemokine transcription by interfering with the NF-κB and STAT/IRF signaling pathways by complexing with them and recruiting HDAC-1 to attenuate target promoter activity.


World Allergy Organization Journal | 2014

Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma

Talha Ijaz; Konrad Pazdrak; Mridul Kalita; Rolf König; Sanjeev Choudhary; Bing Tian; Istvan Boldogh; Allan R. Brasier

A pathological hallmark of asthma is chronic injury and repair, producing dysfunction of the epithelial barrier function. In this setting, increased oxidative stress, growth factor- and cytokine stimulation, together with extracellular matrix contact produces transcriptional reprogramming of the epithelial cell. This process results in epithelial-mesenchymal transition (EMT), a cellular state associated with loss of epithelial polarity, expression of mesenchymal markers, enhanced mobility and extracellular matrix remodeling. As a result, the cellular biology of the EMT state produces characteristic changes seen in severe, refractory asthma: myofibroblast expansion, epithelial trans-differentiation and subepithelial fibrosis. EMT also induces profound changes in epithelial responsiveness that affects innate immune signaling that may have impact on the adaptive immune response and effectiveness of glucocorticoid therapy in severe asthma. We discuss how this complex phenotype is beginning to be understood using systems biology-level approaches through perturbations coupled with high throughput profiling and computational modeling. Understanding the distinct changes induced by EMT at the systems level may provide translational strategies to reverse the altered signaling and physiology of refractory asthma.


Nucleic Acids Research | 2014

ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment

Ling Fang; Sanjeev Choudhary; Yingxin Zhao; Chukwudi B. Edeh; Chunying Yang; Istvan Boldogh; Allan R. Brasier

Ataxia-telangiectasia mutated (ATM), a member of the phosphatidylinositol 3 kinase-like kinase family, is a master regulator of the double strand DNA break-repair pathway after genotoxic stress. Here, we found ATM serves as an essential regulator of TNF-induced NF-kB pathway. We observed that TNF exposure of cells rapidly induced DNA double strand breaks and activates ATM. TNF-induced ROS promote nuclear IKKγ association with ubiquitin and its complex formation with ATM for nuclear export. Activated cytoplasmic ATM is involved in the selective recruitment of the E3-ubiquitin ligase β-TrCP to phospho-IκBα proteosomal degradation. Importantly, ATM binds and activates the catalytic subunit of protein kinase A (PKAc), ribosmal S6 kinase that controls RelA Ser 276 phosphorylation. In ATM knockdown cells, TNF-induced RelA Ser 276 phosphorylation is significantly decreased. We further observed decreased binding and recruitment of the transcriptional elongation complex containing cyclin dependent kinase-9 (CDK9; a kinase necessary for triggering transcriptional elongation) to promoters of NF-κB-dependent immediate-early cytokine genes, in ATM knockdown cells. We conclude that ATM is a nuclear damage-response signal modulator of TNF-induced NF-κB activation that plays a key scaffolding role in IκBα degradation and RelA Ser 276 phosphorylation. Our study provides a mechanistic explanation of decreased innate immune response associated with A-T mutation.


Endocrinology | 2011

NF-κB-Inducing Kinase (NIK) Mediates Skeletal Muscle Insulin Resistance: Blockade by Adiponectin

Sanjeev Choudhary; Sandeep Sinha; Yanhua Zhao; Srijita Banerjee; Padma Sathyanarayana; Sadeka Shahani; Vadim Sherman; Ronald G. Tilton; Mandeep Bajaj

Enhanced levels of nuclear factor (NF)-κB-inducing kinase (NIK), an upstream kinase in the NF-κB pathway, have been implicated in the pathogenesis of chronic inflammation in diabetes. We investigated whether increased levels of NIK could induce skeletal muscle insulin resistance. Six obese subjects with metabolic syndrome underwent skeletal muscle biopsies before and six months after gastric bypass surgery to quantitate NIK protein levels. L6 skeletal myotubes, transfected with NIK wild-type or NIK kinase-dead dominant negative plasmids, were treated with insulin alone or with adiponectin and insulin. Effects of NIK overexpression on insulin-stimulated glucose uptake were estimated using tritiated 2-deoxyglucose uptake. NF-κB activation (EMSA), phosphatidylinositol 3 (PI3) kinase activity, and phosphorylation of inhibitor κB kinase β and serine-threonine kinase (Akt) were measured. After weight loss, skeletal muscle NIK protein was significantly reduced in association with increased plasma adiponectin and enhanced AMP kinase phosphorylation and insulin sensitivity in obese subjects. Enhanced NIK expression in cultured L6 myotubes induced a dose-dependent decrease in insulin-stimulated glucose uptake. The decrease in insulin-stimulated glucose uptake was associated with a significant decrease in PI3 kinase activity and protein kinase B/Akt phosphorylation. Overexpression of NIK kinase-dead dominant negative did not affect insulin-stimulated glucose uptake. Adiponectin treatment inhibited NIK-induced NF-κB activation and restored insulin sensitivity by restoring PI3 kinase activation and subsequent Akt phosphorylation. These results indicate that NIK induces insulin resistance and further indicate that adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation. These observations suggest that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes.


PLOS Genetics | 2015

Inactivation of PNKP by Mutant ATXN3 Triggers Apoptosis by Activating the DNA Damage-Response Pathway in SCA3

Rui Gao; Yong-Ping Liu; Anabela Silva-Fernandes; Xiang Fang; Adriana A. Paulucci-Holthauzen; Arpita Chatterjee; Hang L. Zhang; Tohru Matsuura; Sanjeev Choudhary; Tetsuo Ashizawa; Arnulf H. Koeppen; Patrícia Maciel; Tapas K. Hazra; Partha S. Sarkar

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3’-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-δ pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.

Collaboration


Dive into the Sanjeev Choudhary's collaboration.

Top Co-Authors

Avatar

Allan R. Brasier

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Bing Tian

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ronald G. Tilton

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Istvan Boldogh

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ling Fang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Naseem H. Ansari

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Partha S. Sarkar

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Srijita Banerjee

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

T. Xiao

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Yanhua Zhao

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge