Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjeev Gumber is active.

Publication


Featured researches published by Sanjeev Gumber.


Science | 2016

Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy

Siddappa N. Byrareddy; James Arthos; Claudia Cicala; Francois Villinger; Kristina T. Ortiz; Dawn M. Little; Neil Sidell; Maureen A. Kane; Jianshi Yu; Jace W. Jones; Philip J. Santangelo; Chiara Zurla; Lyle R. McKinnon; Kelly B. Arnold; Caroline E. Woody; Lutz Walter; Christian Roos; Angela Noll; Donald Van Ryk; Katija Jelicic; Raffaello Cimbro; Sanjeev Gumber; Michelle D. Reid; Volkan Adsay; Praveen K. Amancha; Ann E. Mayne; Tristram G. Parslow; Anthony S. Fauci; Aftab A. Ansari

Antibodies sustain viral control For many infected individuals, antiretroviral therapy (ART) means that an HIV-1 diagnosis is no longer a death sentence. But the virus persists in treated individuals, and complying with the intense drug regimen to keep virus loads down can be challenging for patients. Seeking an alternative, Byrareddy et al. treated ART-suppressed monkeys with antibodies targeting α4β7 integrin. When ART was halted in the antibody-treated animals, viral loads stayed undetectable, and normal CD4 T cell counts were maintained for over 9 months—and persisted—even after stopping the antibody therapy. Science, this issue p. 197 Update: An Editorial Expression of Concern has been published here Combining short-term antiretroviral therapy with specific anti-integrin treatment sustains low viral loads in monkeys. Antiretroviral drug therapy (ART) effectively suppresses replication of both the immunodeficiency viruses, human (HIV) and simian (SIV); however, virus rebounds soon after ART is withdrawn. SIV-infected monkeys were treated with a 90-day course of ART initiated at 5 weeks post infection followed at 9 weeks post infection by infusions of a primatized monoclonal antibody against the α4β7 integrin administered every 3 weeks until week 32. These animals subsequently maintained low to undetectable viral loads and normal CD4+ T cell counts in plasma and gastrointestinal tissues for more than 9 months, even after all treatment was withdrawn. This combination therapy allows macaques to effectively control viremia and reconstitute their immune systems without a need for further therapy.


Nature Methods | 2015

Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy–treated macaques

Philip J. Santangelo; Kenneth Rogers; Chiara Zurla; Emmeline L. Blanchard; Sanjeev Gumber; Karen Strait; Fawn Connor-Stroud; David M. Schuster; Praveen K. Amancha; Jung Joo Hong; Siddappa N. Byrareddy; James A. Hoxie; Brani Vidakovic; Aftab A. Ansari; Eric Hunter; Francois Villinger

The detection of viral dynamics and localization in the context of controlled HIV infection remains a challenge and is limited to blood and biopsies. We developed a method to capture total-body simian immunodeficiency virus (SIV) replication using immunoPET (antibody-targeted positron emission tomography). The administration of a poly(ethylene glycol)-modified, 64Cu-labeled SIV Gp120–specific antibody led to readily detectable signals in the gastrointestinal and respiratory tract, lymphoid tissues and reproductive organs of viremic monkeys. Viral signals were reduced in aviremic antiretroviral-treated monkeys but detectable in colon, select lymph nodes, small bowel, nasal turbinates, the genital tract and lung. In elite controllers, virus was detected primarily in foci in the small bowel, select lymphoid areas and the male reproductive tract, as confirmed by quantitative reverse-transcription PCR (qRT-PCR) and immunohistochemistry. This real-time, in vivo viral imaging method has broad applications to the study of immunodeficiency virus pathogenesis, drug and vaccine development, and the potential for clinical translation.


Journal of Clinical Investigation | 2015

Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques.

Luca Micci; Emily S. Ryan; Rémi Fromentin; Steven E. Bosinger; Justin L. Harper; Tianyu He; Sara Paganini; Kirk A. Easley; Ann Chahroudi; Clarisse Benne; Sanjeev Gumber; Colleen S. McGary; Kenneth Rogers; Claire Deleage; Carissa Lucero; Siddappa N. Byrareddy; Cristian Apetrei; Jacob D. Estes; Jeffrey D. Lifson; Michael Piatak; Nicolas Chomont; Francois Villinger; Guido Silvestri; Jason M. Brenchley; Mirko Paiardini

Despite successful control of viremia, many HIV-infected individuals given antiretroviral therapy (ART) exhibit residual inflammation, which is associated with non-AIDS-related morbidity and mortality and may contribute to virus persistence during ART. Here, we investigated the effects of IL-21 administration on both inflammation and virus persistence in ART-treated, SIV-infected rhesus macaques (RMs). Compared with SIV-infected animals only given ART, SIV-infected RMs given both ART and IL-21 showed improved restoration of intestinal Th17 and Th22 cells and a more effective reduction of immune activation in blood and intestinal mucosa, with the latter maintained through 8 months after ART interruption. Additionally, IL-21, in combination with ART, was associated with reduced levels of SIV RNA in plasma and decreased CD4(+) T cell levels harboring replication-competent virus during ART. At the latest experimental time points, which were up to 8 months after ART interruption, plasma viremia and cell-associated SIV DNA levels remained substantially lower than those before ART initiation in IL-21-treated animals but not in controls. Together, these data suggest that IL-21 supplementation of ART reduces residual inflammation and virus persistence in a relevant model of lentiviral disease and warrants further investigation as a potential intervention for HIV infection.


Journal of Immunology | 2016

Induction of Th1-Biased T Follicular Helper (Tfh) Cells in Lymphoid Tissues during Chronic Simian Immunodeficiency Virus Infection Defines Functionally Distinct Germinal Center Tfh Cells

Vijayakumar Velu; Geetha H. Mylvaganam; Sailaja Gangadhara; Jung Joo Hong; Smita S. Iyer; Sanjeev Gumber; Chris Ibegbu; Francois Villinger; Rama Rao Amara

Chronic HIV infection is associated with accumulation of germinal center (GC) T follicular helper (Tfh) cells in the lymphoid tissue. The GC Tfh cells can be heterogeneous based on the expression of chemokine receptors associated with T helper lineages, such as CXCR3 (Th1), CCR4 (Th2), and CCR6 (Th17). However, the heterogeneous nature of GC Tfh cells in the lymphoid tissue and its association with viral persistence and Ab production during chronic SIV/HIV infection are not known. To address this, we characterized the expression of CXCR3, CCR4, and CCR6 on GC Tfh cells in lymph nodes following SIVmac251 infection in rhesus macaques. In SIV-naive rhesus macaques, only a small fraction of GC Tfh cells expressed CXCR3, CCR4, and CCR6. However, during chronic SIV infection, the majority of GC Tfh cells expressed CXCR3, whereas the proportion of CCR4+ cells did not change, and CCR6+ cells decreased. CXCR3+, but not CXCR3−, GC Tfh cells produced IFN-γ (Th1 cytokine) and IL-21 (Tfh cytokine), whereas both subsets expressed CD40L following stimulation. Immunohistochemistry analysis demonstrated an accumulation of CD4+IFN-γ+ T cells within the hyperplastic follicles during chronic SIV infection. CXCR3+ GC Tfh cells also expressed higher levels of ICOS, CCR5, and α4β7 and contained more copies of SIV DNA compared with CXCR3− GC Tfh cells. However, CXCR3+ and CXCR3− GC Tfh cells delivered help to B cells in vitro for production of IgG. These data demonstrate that chronic SIV infection promotes expansion of Th1-biased GC Tfh cells, which are phenotypically and functionally distinct from conventional GC Tfh cells and contribute to hypergammaglobulinemia and viral reservoirs.


American Journal of Transplantation | 2017

The Knife's Edge of Tolerance: Inducing Stable Multilineage Mixed Chimerism But With A Significant Risk of CMV Reactivation and Disease in Rhesus Macaques

Hengqi Zheng; Benjamin Watkins; Victor Tkachev; Shan Yu; Dollnovan Tran; Scott N. Furlan; Katie Zeleski; Karnail Singh; Kelly Hamby; Charlotte E. Hotchkiss; Jennifer Lane; Sanjeev Gumber; Andrew B. Adams; Linda C. Cendales; Allan D. Kirk; Amitinder Kaur; Bruce R. Blazar; Christian P. Larsen; Leslie S. Kean

Although stable mixed‐hematopoietic chimerism induces robust immune tolerance to solid organ allografts in mice, the translation of this strategy to large animal models and to patients has been challenging. We have previously shown that in MHC‐matched nonhuman primates (NHPs), a busulfan plus combined belatacept and anti‐CD154‐based regimen could induce long‐lived myeloid chimerism, but without T cell chimerism. In that setting, donor chimerism was eventually rejected, and tolerance to skin allografts was not achieved. Here, we describe an adaptation of this strategy, with the addition of low‐dose total body irradiation to our conditioning regimen. This strategy has successfully induced multilineage hematopoietic chimerism in MHC‐matched transplants that was stable for as long as 24 months posttransplant, the entire length of analysis. High‐level T cell chimerism was achieved and associated with significant donor‐specific prolongation of skin graft acceptance. However, we also observed significant infectious toxicities, prominently including cytomegalovirus (CMV) reactivation and end‐organ disease in the setting of functional defects in anti‐CMV T cell immunity. These results underscore the significant benefits that multilineage chimerism‐induction approaches may represent to transplant patients as well as the inherent risks, and they emphasize the precision with which a clinically successful regimen will need to be formulated and then validated in NHP models.


Transfusion | 2016

Experimental transfusion-induced Babesia microti infection: dynamics of parasitemia and immune responses in a rhesus macaque model.

Sanjeev Gumber; Fernanda S. Nascimento; Kenneth A. Rogers; Henry S. Bishop; Hilda Rivera; Maniphet Xayavong; Sushil G. Devare; Gerald Schochetman; Praveen K. Amancha; Yvonne Qvarnstrom; Patricia P. Wilkins; Francois Villinger

Babesiosis is an emerging tick‐borne infection in humans. The increasing numbers of reported cases of transfusion‐associated babesiosis (TAB), primarily caused by Babesia microti, represents a concern for the safety of the US blood supply.


AIDS | 2017

Early initiation of antiretroviral treatment postSIV infection does not resolve lymphoid tissue activation

Jung J. Hong; Eduardo L. V. Silveira; Praveen K. Amancha; Siddappa N. Byrareddy; Sanjeev Gumber; Kyu Tae Chang; Aftab A. Ansari; Francois Villinger

Objective: Germinal center resident follicular helper T (TFH) cells in lymphoid follicles are a potential sanctuary for HIV/simian immunodeficiency virus (SIV) replication. But the dynamics of germinal centers upon early initiation of antiretroviral therapy (ART) and their potential role in the formation of viral sanctuaries post-SIV infection are not fully understood. Design: Sequential lymph node biopsies (n = 10) were collected from SIVmac239-infected rhesus macaques before infection, at 5 weeks postinfection/pre-ART, 6 and 12 weeks following ART initiation. These tissues and cells were analyzed for frequencies of TFH cells and assignment of germinal center scores. Results: Modest but significant increases in TFH cells and hyperplastic follicles with large germinal centers were noted during the acute phase of SIV infection (week 5/pre-ART). However, 6 weeks after ART initiation, substantial increases in germinal center TFH cells, germinal center B cells, hyperplastic follicles with large germinal centers, and abundant local IL-21 production were observed, whereas levels of SIV RNA and DNA of lymph nodes had decreased to barely detectable values along with barely detectable levels of SIV antibody-producing cells. An additional 6 weeks of ART did not appreciably decrease germinal center TFH or germinal center scores. Conclusion: Thus, although early ART rapidly controls SIV replication, it does not regulate early lymphoid activation, which may contribute to the seeding and magnitude of viral reservoirs.


Journal of Veterinary Diagnostic Investigation | 2010

Endocardial Fibrosarcoma in a Reticulated Python (Python Reticularis)

Sanjeev Gumber; Javier G. Nevarez; Doo-Youn Cho

A female, reticulated python (Python reticularis) of unknown age was presented with a history of lethargy, weakness, and distended coelom. Physical examination revealed severe dystocia and stomatitis. The reticulated python was euthanized due to a poor clinical prognosis. Postmortem examination revealed marked distention of the reproductive tract with 26 eggs (10–12 cm in diameter), pericardial effusion, and a slightly firm, pale tan mass (3–4 cm in diameter) adhered to the endocardium at the base of aorta. Based on histopathologic and transmission electron microscopic findings, the diagnosis of endocardial fibrosarcoma was made.


Experimental and Toxicologic Pathology | 2014

Immunohistological characterization of intercellular junction proteins in rhesus macaque intestine

Sanjeev Gumber; Asma Nusrat; Francois Villinger

Epithelial junctions play an important role in regulating paracellular permeability and intercellular adhesion. It has been reported that changes in the density of epithelial junctions and/or distribution pattern can contribute to various gastrointestinal (GI) disorders. In this study, we investigated the distribution of the tight junction (Claudins. 1, 3, 4, 5, 7, 10, Zonula Occludens (ZO-1), Occludin), adherens junction (E-cadherin), desmosome (Desmoglein 2, Desmocollin 2) and gap junction (Connexin 43) proteins in the jejunum, ileum and colonic epithelium of healthy rhesus macaques (RM) using immunofluorescence labeling. While proteins in these respective junctions were expressed throughout the jejunum, ileum and colon of RM, we observed differential labeling in epithelial cells from these sites. Claudins 1, 3, 4, 7, E-cadherin and Desmoglein 2 were distributed in the respective intercellular junctions with additional labeling in the lateral membrane of epithelial cells in both small and large intestine. However, claudin 5, claudin 10, ZO-1 and occludin showed uniform distribution in the intercellular junctions of crypt and surface epithelial cells of the intestine. Desmocollin 2 localized predominantly in the upper two thirds along the lateral membrane while desmoglein 2 was distributed along the entire lateral membrane of intestinal epithelial cells. In contrast, connexin 43 exhibited punctate lateral labeling in crypt epithelial cells of the small and large intestine. Our results show diverse localization of epithelial intercellular junction proteins along the intestinal tract of RM. These findings may correlate with differences in paracellular permeability and adhesion along the intestinal tract and could correlate with pathologic disease in these regions of the intestine.


Journal of Neuroimmune Pharmacology | 2018

FDC: TFH Interactions within Cervical Lymph Nodes of SIV-Infected Rhesus Macaques

Rajnish S. Dave; Ravi Kumar Sharma; Roshell Muir; Elias K. Haddad; Sanjeev Gumber; Francois Villinger; Artinder P. Nehra; Zafar K. Khan; Brian Wigdahl; Aftab A. Ansari; Siddappa N. Byrareddy; Pooja Jain

Cerebrospinal fluid (CSF) drains via the lymphatic drainage pathway. This lymphatic pathway connects the central nervous system (CNS) to the cervical lymph node (CLN). As the CSF drains to CLN via the dural and nasal lymphatics, T cells and antigen presenting cells pass along the channels from the subarachnoid space through the cribriform plate. Human immunodeficiency virus (HIV) may also egress from the CNS along this pathway. As a result, HIV egressing from the CNS may accumulate within the CLN. Towards this objective, we analyzed CLNs isolated from rhesus macaques that were chronically-infected with simian immunodeficiency virus (SIV). We detected significant accumulation of SIV within the CLNs. SIV virion trapping was observed on follicular dendritic cells (FDCs) localized within the follicular regions of CLNs. In addition, SIV antigens formed immune complexes when FDCs interacted with B cells within the germinal centers. Subsequent interaction of these B cells with CD4+ T follicular helper cells (TFHs) resulted in infection of the latter. Of note, 73% to 90% of the TFHs cells within CLNs were positive for SIV p27 antigen. As such, it appears that not only do the FDCs retain SIV they also transmit them (via B cells) to TFHs within these CLNs. This interaction results in infection of TFHs in the CLNs. Based on these observations, we infer that FDCs within the CLNs have a novel role in SIV entrapment with implications for viral trafficking.

Collaboration


Dive into the Sanjeev Gumber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siddappa N. Byrareddy

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Praveen K. Amancha

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Chiara Zurla

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip J. Santangelo

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony S. Fauci

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge