Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjeev K. Chandrayan is active.

Publication


Featured researches published by Sanjeev K. Chandrayan.


Proceedings of the National Academy of Sciences of the United States of America | 2015

High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

Joseph A. Rollin; Julia S. Martín del Campo; Suwan Myung; Fangfang Sun; Chun You; Allison Bakovic; Roberto Castro; Sanjeev K. Chandrayan; Chang-Hao Wu; Michael W. W. Adams; Ryan S. Senger; Y.-H. Percival Zhang

Significance Hydrogen (H2) has great potential to be used to power passenger vehicles. One solution to these problems is to distribute and store renewable carbohydrate instead, converting it to hydrogen as required. In this work more than 10 purified enzymes were combined into artificial enzymatic pathways and a high yield from both glucose and xylose to hydrogen was achieved. Also, gaseous hydrogen can be separated from aqueous substrates easily, greatly decreasing product separation costs, and avoid reconcentrating sugar solutions. This study describes high-yield enzymatic hydrogen production from biomass sugars and an engineered reaction rate increase achieved through the use of kinetic modeling. Distributed hydrogen production based on evenly distributed less-costly biomass could accelerate the implementation of the hydrogen economy. The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.


Angewandte Chemie | 2013

High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System**

Julia S. Martín del Campo; Joseph A. Rollin; Suwan Myung; You Chun; Sanjeev K. Chandrayan; Rodrigo Patiño; Michael W. W. Adams; Y.-H. Percival Zhang

Let enzymes work: H2 was produced from xylose and water in one reactor containing 13 enzymes (red). By using a novel polyphosphate xylulokinase (XK), xylose was converted into H2 and CO2 with approaching 100 % of the theoretical yield. The findings suggest that cell-free biosystems could produce H2 from biomass xylose at low cost. Xu5P = xylulose 5-phosphate, G6P = glucose 6-phosphate.


Metabolic Engineering | 2014

In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose

Suwan Myung; Joseph A. Rollin; Chun You; Fangfang Sun; Sanjeev K. Chandrayan; Michael W. W. Adams; Y.-H. Percival Zhang

Hydrogen is one of the most important industrial chemicals and will be arguably the best fuel in the future. Hydrogen production from less costly renewable sugars can provide affordable hydrogen, decrease reliance on fossil fuels, and achieve nearly zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. An in vitro synthetic enzymatic pathway comprised of 15 enzymes was designed to split water powered by sucrose to hydrogen. Hydrogen and carbon dioxide were spontaneously generated from sucrose or glucose and water mediated by enzyme cocktails containing up to 15 enzymes under mild reaction conditions (i.e. 37°C and atm). In a batch reaction, the hydrogen yield was 23.2mol of dihydrogen per mole of sucrose, i.e., 96.7% of the theoretical yield (i.e., 12 dihydrogen per hexose). In a fed-batch reaction, increasing substrate concentration led to 3.3-fold enhancement in reaction rate to 9.74mmol of H2/L/h. These proof-of-concept results suggest that catabolic water splitting powered by sugars catalyzed by enzyme cocktails could be an appealing green hydrogen production approach.


Journal of Biological Chemistry | 2012

Engineering Hyperthermophilic Archaeon Pyrococcus furiosus to Overproduce Its Cytoplasmic [NiFe]-Hydrogenase

Sanjeev K. Chandrayan; Patrick M. McTernan; R. Christopher Hopkins; Junsong Sun; Francis E. Jenney; Michael W. W. Adams

Background: Hydrogenases are complex metalloenzymes catalyzing the evolution of hydrogen gas but lacking an efficient system to produce recombinant forms. Results: An NADP(H)-dependent hydrogenase was overproduced by almost an order of magnitude in a hyperthermophilic microorganism. Conclusion: Homologous overproduction of an affinity-tagged hydrogenase was achieved. Significance: Native and mutant forms of hydrogenase can now be generated for in vitro biochemical analyses and bioenergy systems. The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H2 production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production.


PLOS ONE | 2011

Homologous expression of a subcomplex of Pyrococcus furiosus hydrogenase that interacts with pyruvate ferredoxin oxidoreductase.

Robert C. Hopkins; Junsong Sun; Francis E. Jenney; Sanjeev K. Chandrayan; Patrick M. McTernan; Michael W. W. Adams

Hydrogen gas is an attractive alternative fuel as it is carbon neutral and has higher energy content per unit mass than fossil fuels. The biological enzyme responsible for utilizing molecular hydrogen is hydrogenase, a heteromeric metalloenzyme requiring a complex maturation process to assemble its O2-sensitive dinuclear-catalytic site containing nickel and iron atoms. To facilitate their utility in applied processes, it is essential that tools are available to engineer hydrogenases to tailor catalytic activity and electron carrier specificity, and decrease oxygen sensitivity using standard molecular biology techniques. As a model system we are using hydrogen-producing Pyrococcus furiosus, which grows optimally at 100°C. We have taken advantage of a recently developed genetic system that allows markerless chromosomal integrations via homologous recombination. We have combined a new gene marker system with a highly-expressed constitutive promoter to enable high-level homologous expression of an engineered form of the cytoplasmic NADP-dependent hydrogenase (SHI) of P. furiosus. In a step towards obtaining ‘minimal’ hydrogenases, we have successfully produced the heterodimeric form of SHI that contains only two of the four subunits found in the native heterotetrameric enzyme. The heterodimeric form is highly active (150 units mg−1 in H2 production using the artificial electron donor methyl viologen) and thermostable (t1/2 ∼0.5 hour at 90°C). Moreover, the heterodimer does not use NADPH and instead can directly utilize reductant supplied by pyruvate ferredoxin oxidoreductase from P. furiosus. The SHI heterodimer and POR therefore represent a two-enzyme system that oxidizes pyruvate and produces H2 in vitro without the need for an intermediate electron carrier.


Protein Expression and Purification | 2015

High yield purification of a tagged cytoplasmic [NiFe]-hydrogenase and a catalytically-active nickel-free intermediate form

Sanjeev K. Chandrayan; Chang-Hao Wu; Patrick M. McTernan; Michael W. W. Adams

The cytoplasmic [NiFe]-hydrogenase I (SHI) of the hyperthermophile Pyrococcus furiosus evolves hydrogen gas (H2) from NADPH. It has been previously used for biohydrogen production from sugars using a mixture of enzymes in an in vitro cell-free synthetic pathway. The theoretical yield (12 H2/glucose) is three times greater than microbial fermentation (4 H2/glucose), making the in vitro approach very promising for large scale biohydrogen production. Further development of this process at an industrial scale is limited by the availability of the H2-producing SHI. To overcome the obstacles of the complex biosynthetic and maturation pathway for the [NiFe] site of SHI, the four gene operon encoding the enzyme was overexpressed in P. furiosus and included a polyhistidine affinity tag. The one-step purification resulted in a 50-fold increase in yield compared to the four-step purification procedure for the native enzyme. A trimeric form was also identified that lacked the [NiFe]-catalytic subunit but catalyzed NADPH oxidation with a specific activity similar to that of the tetrameric form. The presence of an active trimeric intermediate confirms the proposed maturation pathway where, in the terminal step, the NiFe-containing catalytic subunit assembles with NADPH-oxidizing trimeric form to give the active holoenzyme.


Journal of Biological Chemistry | 2014

Intact Functional Fourteen-subunit Respiratory Membrane-bound [NiFe]-Hydrogenase Complex of the Hyperthermophilic Archaeon Pyrococcus furiosus

Patrick M. McTernan; Sanjeev K. Chandrayan; Chang Hao Wu; Brian J. Vaccaro; W. Andrew Lancaster; Qingyuan Yang; Dax Fu; Greg L. Hura; John A. Tainer; Michael W. W. Adams

Background: The hydrogen-evolving membrane-bound hydrogenase (MBH) functions as a simple respiratory system in anaerobic microbes. Results: Affinity-tagged MBH was solubilized from membranes of a hyperthermophile as an intact 14-subunit complex. Conclusion: Solubilized MBH was catalytically active, and a structural model based on small angle x-ray scattering (SAXS) was obtained. Significance: The successful purification of a respiratory hydrogenase has enabled biochemical and structural studies. The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na+/H+ antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na+ ions.


Journal of the American Chemical Society | 2015

The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance

Patrick Kwan; Chelsea L. McIntosh; David P. Jennings; R. Chris Hopkins; Sanjeev K. Chandrayan; Chang Hao Wu; Michael W. W. Adams; Anne K. Jones

We report the first direct electrochemical characterization of the impact of oxygen on the hydrogen oxidation activity of an oxygen-tolerant, group 3, soluble [NiFe]-hydrogenase: hydrogenase I from Pyrococcus furiosus (PfSHI), which grows optimally near 100 °C. Chronoamperometric experiments were used to probe the sensitivity of PfSHI hydrogen oxidation activity to both brief and prolonged exposure to oxygen. For experiments between 15 and 80 °C, following short (<200 s) exposure to 14 μM O2 under oxidizing conditions, PfSHI always maintains some fraction of its initial hydrogen oxidation activity; i.e., it is oxygen-tolerant. Reactivation experiments show that two inactive states are formed by interaction with oxygen and both can be quickly (<150 s) reactivated. Analogous experiments, in which the interval of oxygen exposure is extended to 900 s, reveal that the response is highly temperature-dependent. At 25 °C, under sustained 1% O2/ 99% H2 exposure, the H2oxidation activity drops nearly to zero. However, at 80 °C, up to 32% of the enzymes oxidation activity is retained. Reactivation of PfSHI following sustained exposure to oxygen occurs on a much longer time scale (tens of minutes), suggesting that a third inactive species predominates under these conditions. These results stand in contrast to the properties of oxygen-tolerant, group 1 [NiFe]-hydrogenases, which form a single state upon reaction with oxygen, and we propose that this new type of hydrogenase should be referred to as oxygen-resilient. Furthermore, PfSHI, like other group 3 [NiFe]-hydrogenases, does not possess the proximal [4Fe3S] cluster associated with the oxygen tolerance of some group 1 enzymes. Thus, a new mechanism is necessary to explain the observed oxygen tolerance in soluble, group 3 [NiFe]-hydrogenases, and we present a model integrating both electrochemical and spectroscopic results to define the relationships of these inactive states.


Applied and Environmental Microbiology | 2014

Mannosylglycerate and di-myo-inositol phosphate have interchangeable roles during adaptation of Pyrococcus furiosus to heat stress.

Ana M. Esteves; Sanjeev K. Chandrayan; Patrick M. McTernan; Nuno Borges; Michael W. W. Adams; Helena Santos

ABSTRACT Marine hyperthermophiles accumulate small organic compounds, known as compatible solutes, in response to supraoptimal temperatures or salinities. Pyrococcus furiosus is a hyperthermophilic archaeon that grows optimally at temperatures near 100°C. This organism accumulates mannosylglycerate (MG) and di-myo-inositol phosphate (DIP) in response to osmotic and heat stress, respectively. It has been assumed that MG and DIP are involved in cell protection; however, firm evidence for the roles of these solutes in stress adaptation is still missing, largely due to the lack of genetic tools to produce suitable mutants of hyperthermophiles. Recently, such tools were developed for P. furiosus, making this organism an ideal target for that purpose. In this work, genes coding for the synthases in the biosynthetic pathways of MG and DIP were deleted by double-crossover homologous recombination. The growth profiles and solute patterns of the two mutants and the parent strain were investigated under optimal growth conditions and also at supraoptimal temperatures and NaCl concentrations. DIP was a suitable replacement for MG during heat stress, but substitution of MG for DIP and aspartate led to less efficient growth under conditions of osmotic stress. The results suggest that the cascade of molecular events leading to MG synthesis is tuned for osmotic adjustment, while the machinery for induction of DIP synthesis responds to either stress agent. MG protects cells against heat as effectively as DIP, despite the finding that the amount of DIP consistently increases in response to heat stress in the nine (hyper)thermophiles examined thus far.


Protein Engineering Design & Selection | 2015

Engineering the respiratory membrane-bound hydrogenase of the hyperthermophilic archaeon Pyrococcus furiosus and characterization of the catalytically active cytoplasmic subcomplex

Patrick M. McTernan; Sanjeev K. Chandrayan; Chang-Hao Wu; Brian J. Vaccaro; W. Andrew Lancaster; Michael W. W. Adams

The archaeon Pyrococcus furiosus grows optimally at 100°C by converting carbohydrates to acetate, carbon dioxide and hydrogen gas (H2), obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is classified as a Group 4 hydrogenase and is encoded by a 14-gene operon that contains hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged 4-subunit cytoplasmic subcomplex of MBH (C-MBH) was engineered and expressed in P. furiosus by differential transcription of the MBH operon. It was purified under anaerobic conditions by affinity chromatography without detergent. Purified C-MBH had a Fe : Ni ratio of 14 : 1, similar to the predicted value of 13 : 1. The O2 sensitivities of C-MBH and the 14-subunit membrane-bound version were similar (half-lives of ∼15 h in air), but C-MBH was more thermolabile (half-lives at 90°C of 8 and 25 h, respectively). C-MBH evolved H2 with the physiological electron donor, reduced ferredoxin, optimally at 60°C. This is the first report of the engineering and characterization of a soluble catalytically active subcomplex of a membrane-bound respiratory hydrogenase.

Collaboration


Dive into the Sanjeev K. Chandrayan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Esteves

Universidade Nova de Lisboa

View shared research outputs
Researchain Logo
Decentralizing Knowledge