Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjeev Misra is active.

Publication


Featured researches published by Sanjeev Misra.


Journal of Andrology | 2014

Recent scenario of obesity and male fertility

Kamla Kant Shukla; Shailja Chambial; Shailendra Dwivedi; Sanjeev Misra; Praveen Sharma

The aim of this review was to provide current scenario linking obesity and male fertility. Obesity has been linked to male fertility because of lifestyle changes, internal hormonal environment alterations, and sperm genetic factors. A few studies assessing the impact of obesity on sperm genetic factor have been published, but they did not lead to a strong consensus. Our objective was to explore further the relationship between sperm genetic factor and obesity. There are emerging facts that obesity negatively affects male reproductive potential not only by reducing sperm quality, but in particular it alters the physical and molecular structure of germ cells in the testes and ultimately affects the maturity and function of sperm cells. Inhibition of microRNA in the male pronucleus of fertilized zygotes produces offspring of phenotypes of variable severity depending on miRNAs ratios. Hence, these RNAs have a role in the oocyte development during fertilization and in embryo development, fetal survival, and offspring phenotype. It has been reported that the miRNA profile is altered in spermatozoa of obese males, however, the impact of these changes in fertilization and embryo health remains as yet not known.


Cytokine | 2015

Genetic variability at promoters of IL-18 (pro-) and IL-10 (anti-) inflammatory gene affects susceptibility and their circulating serum levels: An explorative study of prostate cancer patients in North Indian populations.

Shailendra Dwivedi; Apul Goel; Sanjay Khattri; Anil Mandhani; Praveen Sharma; Sanjeev Misra; Kamlesh Kumar Pant

Inflammation is an important hallmark of all types of cancers with a well-established role in carcinogenesis. The net inflammatory response is determined by the balance between pro- and anti-inflammatory cytokines, the levels of which may be affected by the genetic make-up. Interleukin (IL)-18, a pro-inflammatory cytokine expressed by various cells including those of the prostate, is a key mediator of anti-cancer immune response. IL-10, an anti-inflammatory cytokine associated with tumour malignancy, causes escape from immune surveillance. This study hypothesizes that genetic variants of IL-18 (-607 C/A and -137 G/T) and IL-10 (-819 C/T and -592 C/A) may influence the circulating levels of these interleukins, thereby generating susceptibility risk to prostate cancer. The study was conducted on 676 subjects (controls and patients of prostate cancer (PCa): 291 each; and 94 patients with benign prostate hypertrophy (BPH)). Genotyping was performed by PCR-RFLP and Real-Time PCR probe-based method. Circulating interleukin levels were obtained by ELISA. Circulating IL-18 levels were significantly elevated in cancer and BPH patients carrying GG genotypes for -137 of IL-18. The trend of circulating IL-18 levels was GG>GC>CC, observed in all groups. The -137 genetic variants of IL-18 significantly associated with PCa risk were GC, CC, and GC+CC, compared to GG (OR: 1.71, 95% CI: 1.20-2.46; OR: 3.35, 95% CI: 2.03-5.53; and OR: 2.05, 95% CI: 1.46-2.87, respectively). A significant association of AA and CA+AA against CC genotype was observed at -607 locus of IL-18 (OR: 0.46, 95%CI: 0.29-0.72; OR: 0.61, 95% CI: 0.41-0.90, respectively). Significantly elevated levels of IL-10 were observed with TT (wild) genotype at -819 of IL-10, compared to the CC (homozygous mutant) genotype in all three groups of subjects. However, no significant association was found between IL-10 promoter genotypes and PCa risk. We conclude that genetic variants of IL-18 and IL-10 promoters influence the circulating levels of these interleukins. Variations at -137 and -607 loci of IL-18 are associated with susceptibility to PCa.


Scientific Reports | 2016

New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage

Dharmendra Kumar Yadav; Reeta Rai; Naresh Kumar; Surjeet Singh; Sanjeev Misra; Praveen Sharma; Priyanka Shaw; Horacio Pérez-Sánchez; Ricardo L. Mancera; Eun Ha Choi; Mi-hyun Kim; Ramendra Pratap

The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.


Urologic Oncology-seminars and Original Investigations | 2017

Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer.

Kamla Kant Shukla; Sanjeev Misra; Puneet Pareek; Vivek Mishra; Barkha Singhal; Parveen Sharma

Prostate cancer (CaP) is a leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. Due to the alteration and incomplete characterization of the CaP genomic markers, the quest for novel cellular metabolic regulatory molecules like micro RNA (miRNA) as a biomarker could be considered for the prognosis and treatment of CaP in future. In this article, we review the existing literature pertaining to CaP. Study provides a comprehensive miRNA profile expressed in CaP. Beside the miRNA expressed in the tumor tissue, circulating miRNAs have been found highly stable and are both detectable and quantifiable in a range of accessible bio fluids; therefore, miRNA has the potential to be useful diagnostic, prognostic and predictive biomarker. Along with being an important molecule in modulation of CaP progression, the miRNA have certain limitations such as lack of stable expression of multiple target genes and often disrupt entire signaling networks of cellular metabolic pathways. We conclude that: The alteration of miRNA and their role played in cellular regulatory networks would be the next target of basic research in CaP. The miRNAs identified may be validated and modeled to understand their role in CaP, using bioinformatics. There is an immediate unmet need in the translational approach of identified miRNAs. The characterization of miRNAs involved in CaP is still incomplete: adequate validation studies are required to corroborate current results.


The Prostate | 2015

Functional genetic variability at promoters of pro-(IL-18) and anti-(IL-10) inflammatory affects their mRNA expression and survival in prostate carcinoma patients: Five year follow-up study.

Shailendra Dwivedi; Apul Goel; Anil Mandhani; Sanjay Khattri; Praveen Sharma; Sanjeev Misra; Kamlesh Kumar Pant

Inflammation is an important hallmark of all cancers. The net inflammatory response is determined by a delicate balance between pro‐ and anti‐inflammatory cytokines, which, in turn, is determined by the genetic make‐up. The present study investigates the role of variations in the promoter regions of IL‐18 and IL‐10 (anti‐inflammatory) cytokines on mRNA expressions and survival in prostate cancer (PCa) patients.


Asian Pacific Journal of Cancer Prevention | 2015

Pro-(IL-18) and Anti-(IL-10) Inflammatory Promoter Genetic Variants (Intrinsic Factors) with Tobacco Exposure (Extrinsic Factors) May Influence Susceptibility and Severity of Prostate Carcinoma: A Prospective Study

Shailendra Dwivedi; Sarvesh Singh; Apul Goel; Sanjay Khattri; Anil Mandhani; Praveen Sharma; Sanjeev Misra; Kamlesh Kumar Pant

BACKGROUND It has been hypothesized that IL-18 (pro-) and IL-10 (anti-) inflammatory genetic variants at -607 C/A-137G/C and -819C/T,-592C/A, respectively, may generate susceptibility and severity risk with various modes of tobacco exposure in prostate carcinoma (PCa) patients. IL-18 is a pro-inflammatory cytokine expressed on various cells including prostate gland elements, and is a key mediator of immune responses with anti-cancerous properties. IL-10 is an anti-inflammatory cytokine that is associated with tumour malignancy which causes immune escape. MATERIALS AND METHODS The present study was conducted with 540 subjects, comprising 269 prostate carcinoma patients and 271 controls. Genotyping was performed by PCR-RFLP and confirmed by real time PCR probe-based methods. RESULTS The findings indicated that the mutant heterozygous and homozygous genotype CC and GC+CC showed significant negative associations (p=0.01, OR=0.21; 95% CI: 0.08-0.51 and p=0.011, OR=0.43; 95% CI: 0.22-0.81, respectively) thus, less chance to be diagnosed as cancer against GG genotype of tobacco smoking patients. In addition, a heterozygous GC genotype at the same locus of IL-18 pro-inflammatory cytokine may aggravate the severity (OR=2.82; 95%CI 1.09-7.29 :p=001) so that patients are more likely to be diagnosed in advanced stage than with the GG wild homozygous genotype. Our results also illustrated that anti-inflammatory cytokine (IL-10) genetic variants, although showing no significant association with susceptibility to cancer of the prostate, may gave profound effects on severity of the disease, as -819 TC (OR=4.60; 95%CI 1.35-15.73), and -592 AC (OR=5.04; 95%CI 1.08-25.43) of IL-10 in tobacco chewers and combined users (both chewers and smokers) respectively, are associated with diagnosis in more advanced stage than with other variants. CONCLUSIONS We conclude that promoter genetic variants of IL-18 and IL-10 with various modes of tobacco exposure may affect not only susceptibility risk but also severity in prostate cancer.


Scientific Reports | 2018

Molecular Insights into the Interaction of RONS and Thieno[3,2-c]pyran Analogs with SIRT6/COX-2: A Molecular Dynamics Study

Dharmendra K. Yadav; Surendra Kumar; Saloni; Sanjeev Misra; Lalit Yadav; Mahesh Teli; Praveen Sharma; Sandeep Chaudhary; Naresh Kumar; Eun Ha Choi; Hyung Sik Kim; Mi-hyun Kim

SIRT6 and COX-2 are oncogenes target that promote the expression of proinflammatory and pro-survival proteins through a signaling pathway, which leads to increased survival and proliferation of tumor cells. However, COX-2 also suppresses skin tumorigenesis and their relationship with SIRT6, making it an interesting target for the discovery of drugs with anti-inflammatory and anti-cancer properties. Herein, we studied the interaction of thieno[3,2-c]pyran analogs and RONS species with SIRT6 and COX-2 through the use of molecular docking and molecular dynamic simulations. Molecular docking studies revealed the importance of hydrophobic and hydrophilic amino acid residues for the stability. The molecular dynamics study examined conformational changes in the enzymes caused by the binding of the substrates and how those changes affected the stability of the protein-drug complex. The average RMSD values of the backbone atoms in compounds 6 and 10 were calculated from 1000 ps to 10000 ps and were found to be 0.13 nm for both compounds. Similarly, the radius of gyration values for compounds 6 and 10 were found to be 1.87 ± 0.03 nm and 1.86 ± 0.02 nm, respectively. The work presented here, will be of great help in lead identification and optimization for early drug discovery.


Indian Journal of Clinical Biochemistry | 2017

Diseases and Molecular Diagnostics: A Step Closer to Precision Medicine

Shailendra Dwivedi; Purvi Purohit; Radhieka Misra; Puneet Pareek; Apul Goel; Sanjay Khattri; Kamlesh Kumar Pant; Sanjeev Misra; Praveen Sharma

The current advent of molecular technologies together with a multidisciplinary interplay of several fields led to the development of genomics, which concentrates on the detection of pathogenic events at the genome level. The structural and functional genomics approaches have now pinpointed the technical challenge in the exploration of disease-related genes and the recognition of their structural alterations or elucidation of gene function. Various promising technologies and diagnostic applications of structural genomics are currently preparing a large database of disease-genes, genetic alterations etc., by mutation scanning and DNA chip technology. Further the functional genomics also exploring the expression genetics (hybridization-, PCR- and sequence-based technologies), two-hybrid technology, next generation sequencing with Bioinformatics and computational biology. Advances in microarray “chip” technology as microarrays have allowed the parallel analysis of gene expression patterns of thousands of genes simultaneously. Sequence information collected from the genomes of many individuals is leading to the rapid discovery of single nucleotide polymorphisms or SNPs. Further advances of genetic engineering have also revolutionized immunoassay biotechnology via engineering of antibody-encoding genes and the phage display technology. The Biotechnology plays an important role in the development of diagnostic assays in response to an outbreak or critical disease response need. However, there is also need to pinpoint various obstacles and issues related to the commercialization and widespread dispersal of genetic knowledge derived from the exploitation of the biotechnology industry and the development and marketing of diagnostic services. Implementation of genetic criteria for patient selection and individual assessment of the risks and benefits of treatment emerges as a major challenge to the pharmaceutical industry. Thus this field is revolutionizing current era and further it may open new vistas in the field of disease management.


Drug Design Development and Therapy | 2017

Molecular docking, QSAR and ADMET studies of withanolide analogs against breast cancer

Dharmendra Kumar Yadav; Surendra Kumar; Saloni; Harpreet Singh; Mi-hyun Kim; Praveen Sharma; Sanjeev Misra; Feroz Khan

Withanolides are a group of pharmacologically active compounds present in most prodigal amounts in roots and leaves of Withania somnifera (Indian ginseng), one of the most important medicinal plants of Indian traditional practice of medicine. Withanolides are steroidal lactones (highly oxygenated C-28 phytochemicals) and have been reported to exhibit immunomodulatory, anticancer and other activities. In the present study, a quantitative structure activity relationship (QSAR) model was developed by a forward stepwise multiple linear regression method to predict the activity of withanolide analogs against human breast cancer. The most effective QSAR model for anticancer activity against the SK-Br-3 cell showed the best correlation with activity (r2=0.93 and rCV2 =0.90). Similarly, cross-validation regression coefficient (rCV2=0.85) of the best QSAR model against the MCF7/BUS cells showed a high correlation (r2=0.91). In particular, compounds CID_73621, CID_435144, CID_301751 and CID_3372729 have a marked antiproliferative activity against the MCF7/BUS cells, while 2,3-dihydrowithaferin A-3-beta-O-sulfate, withanolide 5, withanolide A, withaferin A, CID_10413139, CID_11294368, CID_53477765, CID_135887, CID_301751 and CID_3372729 have a high activity against the Sk-Br-3 cells compared to standard drugs 5-fluorouracil (5-FU) and camptothecin. Molecular docking was performed to study the binding conformations and different bonding behaviors, in order to reveal the plausible mechanism of action behind higher accumulation of active withanolide analogs with β-tubulin. The results of the present study may help in the designing of lead compound with improved activity.


Frontiers in chemistry | 2018

Discovery of C-3 Tethered 2-oxo-benzo[1,4]oxazines as Potent Antioxidants: Bio-Inspired Based Design, Synthesis, Biological Evaluation, Cytotoxic, and in Silico Molecular Docking Studies

Vashundhra Sharma; Pradeep K. Jaiswal; Mukesh Saran; Dharmendra K. Yadav; Saloni; Manas Mathur; Ajit K. Swami; Sanjeev Misra; Mi-hyun Kim; Sandeep Chaudhary

The discovery of C-3 tethered 2-oxo-benzo[1,4]oxazines as potent antioxidants is disclosed. All the analogs 20a-20ab have been synthesized via “on water” ultrasound-assisted irradiation conditions in excellent yields (upto 98%). All the compounds have been evaluated for their in vitro antioxidant activities using DPPH free radical scavenging assay as well as FRAP assay. The result showed promising antioxidant activities having IC50 values in the range of 4.74 ± 0.08 to 92.20 ± 1.54 μg/mL taking ascorbic acid (IC50 = 4.57 μg/mL) as standard reference. In this study, compounds 20b and 20t, the most active compound of the series, showed IC50 values of 6.89 ± 0.07 μg/mL and 4.74 ± 0.08 μg/mL, respectively in comparison with ascorbic acid. In addition, the detailed SAR study shows that electron-withdrawing group increases antioxidant activity and vice versa. Furthermore, in the FRAP assay, eight compounds (20c, 20j, 20m, 20n, 20r, 20u, 20z, and 20aa) were found more potent than standard reference BHT (C0.5FRAP = 546.0 ± 13.6 μM). The preliminary cytotoxic study reveals the non-toxic nature of active compounds 20b and 20t in non-cancerous 3T3 fibroblast cell lines in MTT assay up to 250 μg/mL concentration. The results were validated via carrying out in silico molecular docking studies of promising compounds 20a, 20b, and 20t in comparison with standard reference. To the best of our knowledge, this is the first detailed study of C-3 tethered 2-oxo-benzo[1,4]oxazines as potential antioxidant agents.

Collaboration


Dive into the Sanjeev Misra's collaboration.

Top Co-Authors

Avatar

Praveen Sharma

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shailendra Dwivedi

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Apul Goel

King George's Medical University

View shared research outputs
Top Co-Authors

Avatar

Sanjay Khattri

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Kamlesh Kumar Pant

King George's Medical University

View shared research outputs
Top Co-Authors

Avatar

Puneet Pareek

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Mandhani

Sanjay Gandhi Post Graduate Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Kamla Kant Shukla

Central Drug Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge