Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjeewa A. Goonasekera is active.

Publication


Featured researches published by Sanjeewa A. Goonasekera.


Nature Medicine | 2012

Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals

Naresh C. Bal; Santosh K. Maurya; Danesh H. Sopariwala; Sanjaya K. Sahoo; Subash C. Gupta; Sana Shaikh; Meghna Pant; Leslie A. Rowland; Eric Bombardier; Sanjeewa A. Goonasekera; A. Russell Tupling; Jeffery D. Molkentin; Muthu Periasamy

The role of skeletal muscle in nonshivering thermogenesis (NST) is not well understood. Here we show that sarcolipin (Sln), a newly identified regulator of the sarco/endoplasmic reticulum Ca2+-ATPase (Serca) pump, is necessary for muscle-based thermogenesis. When challenged to acute cold (4 °C), Sln−/− mice were not able to maintain their core body temperature (37 °C) and developed hypothermia. Surgical ablation of brown adipose tissue and functional knockdown of Ucp1 allowed us to highlight the role of muscle in NST. Overexpression of Sln in the Sln-null background fully restored muscle-based thermogenesis, suggesting that Sln is the basis for Serca-mediated heat production. We show that ryanodine receptor 1 (Ryr1)-mediated Ca2+ leak is an important mechanism for Serca-activated heat generation. Here we present data to suggest that Sln can continue to interact with Serca in the presence of Ca2+, which can promote uncoupling of the Serca pump and cause futile cycling. We further show that loss of Sln predisposes mice to diet-induced obesity, which suggests that Sln-mediated NST is recruited during metabolic overload. These data collectively suggest that SLN is an important mediator of muscle thermogenesis and whole-body energy metabolism.


Journal of Clinical Investigation | 2010

Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice

John W. Elrod; Renee Wong; Shikha Mishra; Ronald J. Vagnozzi; Bhuvana Sakthievel; Sanjeewa A. Goonasekera; Jason Karch; Scott A. Gabel; John L. Farber; Thomas Force; Joan Heller Brown; Elizabeth Murphy; Jeffery D. Molkentin

Cyclophilin D (which is encoded by the Ppif gene) is a mitochondrial matrix peptidyl-prolyl isomerase known to modulate opening of the mitochondrial permeability transition pore (MPTP). Apart from regulating necrotic cell death, the physiologic function of the MPTP is largely unknown. Here we have shown that Ppif(-/-) mice exhibit substantially greater cardiac hypertrophy, fibrosis, and reduction in myocardial function in response to pressure overload stimulation than control mice. In addition, Ppif(-/-) mice showed greater hypertrophy and lung edema as well as reduced survival in response to sustained exercise stimulation. Cardiomyocyte-specific transgene expression of cyclophilin D in Ppif(-/-) mice rescued the enhanced hypertrophy, reduction in cardiac function, and rapid onset of heart failure following pressure overload stimulation. Mechanistically, the maladaptive phenotype in the hearts of Ppif(-/-) mice was associated with an alteration in MPTP-mediated Ca(2+) efflux resulting in elevated levels of mitochondrial matrix Ca(2+) and enhanced activation of Ca(2+)-dependent dehydrogenases. Elevated matrix Ca(2+) led to increased glucose oxidation relative to fatty acids, thereby limiting the metabolic flexibility of the heart that is critically involved in compensation during stress. These findings suggest that the MPTP maintains homeostatic mitochondrial Ca(2+) levels to match metabolism with alterations in myocardial workload, thereby suggesting a physiologic function for the MPTP.


Cell | 2008

RyR1 S-Nitrosylation Underlies Environmental Heat Stroke and Sudden Death in Y522S RyR1 Knockin Mice

William J. Durham; Paula Aracena-Parks; Cheng Long; Ann E. Rossi; Sanjeewa A. Goonasekera; Simona Boncompagni; Daniel L. Galvan; Charles P. Gilman; Mariah R. Baker; Natalia Shirokova; Feliciano Protasi; Robert T. Dirksen; Susan L. Hamilton

Mice with a malignant hyperthermia mutation (Y522S) in the ryanodine receptor (RyR1) display muscle contractures, rhabdomyolysis, and death in response to elevated environmental temperatures. We demonstrate that this mutation in RyR1 causes Ca(2+) leak, which drives increased generation of reactive nitrogen species (RNS). Subsequent S-nitrosylation of the mutant RyR1 increases its temperature sensitivity for activation, producing muscle contractures upon exposure to elevated temperatures. The Y522S mutation in humans is associated with central core disease. Many mitochondria in the muscle of heterozygous Y522S mice are swollen and misshapen. The mutant muscle displays decreased force production and increased mitochondrial lipid peroxidation with aging. Chronic treatment with N-acetylcysteine protects against mitochondrial oxidative damage and the decline in force generation. We propose a feed-forward cyclic mechanism that increases the temperature sensitivity of RyR1 activation and underlies heat stroke and sudden death. The cycle eventually produces a myopathy with damaged mitochondria.


Journal of Biological Chemistry | 2006

Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1.

Paula Aracena-Parks; Sanjeewa A. Goonasekera; Charles P. Gilman; Robert T. Dirksen; Cecilia Hidalgo; Susan L. Hamilton

The skeletal muscle Ca2+-release channel (ryanodine receptor type 1 (RyR1)) is a redox sensor, susceptible to reversible S-nitrosylation, S-glutathionylation, and disulfide oxidation. So far, Cys-3635 remains the only cysteine residue identified as functionally relevant to the redox sensing properties of the channel. We demonstrate that expression of the C3635A-RyR1 mutant in RyR1-null myotubes alters the sensitivity of the ryanodine receptor to activation by voltage, indicating that Cys-3635 is involved in voltage-gated excitation-contraction coupling. However, H2O2 treatment of C3635A-RyR1 channels or wild-type RyR1, following their expression in human embryonic kidney cells, enhances [3H]ryanodine binding to the same extent, suggesting that cysteines other than Cys-3635 are responsible for the oxidative enhancement of channel activity. Using a combination of Western blotting and sulfhydryl-directed fluorescent labeling, we found that two large regions of RyR1 (amino acids 1-2401 and 3120-4475), previously shown to be involved in disulfide bond formation, are also major sites of both S-nitrosylation and S-glutathionylation. Using selective isotopecoded affinity tag labeling of RyR1 and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, we identified, out of the 100 cysteines in each RyR1 subunit, 9 that are endogenously modified (Cys-36, Cys-315, Cys-811, Cys-906, Cys-1591, Cys-2326, Cys-2363, Cys-3193, and Cys-3635) and another 3 residues that were only modified with exogenous redox agents (Cys-253, Cys-1040, and Cys-1303). We also identified the types of redox modification each of these cysteines can undergo. In summary, we have identified a discrete subset of cysteines that are likely to be involved in the functional response of RyR1 to different redox modifications (S-nitrosylation, S-glutathionylation, and oxidation to disulfides).


Journal of Biological Chemistry | 2009

Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II.

Emily A. Oestreich; Sundeep Malik; Sanjeewa A. Goonasekera; Burns C. Blaxall; Grant G. Kelley; Robert T. Dirksen; Alan V. Smrcka

Recently, we identified a novel signaling pathway involving Epac, Rap, and phospholipase C (PLC)ϵ that plays a critical role in maximal β-adrenergic receptor (βAR) stimulation of Ca2+-induced Ca2+ release (CICR) in cardiac myocytes. Here we demonstrate that PLCϵ phosphatidylinositol 4,5-bisphosphate hydrolytic activity and PLCϵ-stimulated Rap1 GEF activity are both required for PLCϵ-mediated enhancement of sarcoplasmic reticulum Ca2+ release and that PLCϵ significantly enhances Rap activation in response to βAR stimulation in the heart. Downstream of PLCϵ hydrolytic activity, pharmacological inhibition of PKC significantly inhibited both βAR- and Epac-stimulated increases in CICR in PLCϵ+/+ myocytes but had no effect in PLCϵ–/– myocytes. βAR and Epac activation caused membrane translocation of PKCϵ in PLCϵ+/+ but not PLCϵ–/– myocytes and small interfering RNA-mediated PKCϵ knockdown significantly inhibited both βAR and Epac-mediated CICR enhancement. Further downstream, the Ca2+/calmodulin-dependent protein kinase II (CamKII) inhibitor, KN93, inhibited βAR- and Epac-mediated CICR in PLCϵ+/+ but not PLCϵ–/– myocytes. Epac activation increased CamKII Thr286 phosphorylation and enhanced phosphorylation at CamKII phosphorylation sites on the ryanodine receptor (RyR2) (Ser2815) and phospholamban (Thr17) in a PKC-dependent manner. Perforated patch clamp experiments revealed that basal and βAR-stimulated peak L-type current density are similar in PLCϵ+/+ and PLCϵ–/– myocytes suggesting that control of sarcoplasmic reticulum Ca2+ release, rather than Ca2+ influx through L-type Ca2+ channels, is the target of regulation of a novel signal transduction pathway involving sequential activation of Epac, PLCϵ, PKCϵ, and CamKII downstream of βAR activation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy

Prince J. Kannankeril; Brett M. Mitchell; Sanjeewa A. Goonasekera; Mihail G. Chelu; Wei Zhang; Subeena Sood; Debra L. Kearney; Cristina I. Danila; Mariella De Biasi; Xander H.T. Wehrens; Robia G. Pautler; Dan M. Roden; George E. Taffet; Robert T. Dirksen; Mark E. Anderson; Susan L. Hamilton

Mutations in the cardiac ryanodine receptor 2 (RyR2) have been associated with catecholaminergic polymorphic ventricular tachycardia and a form of arrhythmogenic right ventricular dysplasia. To study the relationship between RyR2 function and these phenotypes, we developed knockin mice with the human disease-associated RyR2 mutation R176Q. Histologic analysis of hearts from RyR2R176Q/+ mice revealed no evidence of fibrofatty infiltration or structural abnormalities characteristic of arrhythmogenic right ventricular dysplasia, but right ventricular end-diastolic volume was decreased in RyR2R176Q/+ mice compared with controls, indicating subtle functional impairment due to the presence of a single mutant allele. Ventricular tachycardia (VT) was observed after caffeine and epinephrine injection in RyR2R176Q/+, but not in WT, mice. Intracardiac electrophysiology studies with programmed stimulation also elicited VT in RyR2R176Q/+ mice. Isoproterenol administration during programmed stimulation increased both the number and duration of VT episodes in RyR2R176Q/+ mice, but not in controls. Isolated cardiomyocytes from RyR2R176Q/+ mice exhibited a higher incidence of spontaneous Ca2+ oscillations in the absence and presence of isoproterenol compared with controls. Our results suggest that the R176Q mutation in RyR2 predisposes the heart to catecholamine-induced oscillatory calcium-release events that trigger a calcium-dependent ventricular arrhythmia.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism

Douglas P. Millay; Sanjeewa A. Goonasekera; Michelle A. Sargent; Marjorie Maillet; Bruce J. Aronow; Jeffery D. Molkentin

Muscular dystrophy is a general term encompassing muscle disorders that cause weakness and wasting, typically leading to premature death. Membrane instability, as a result of a genetic disruption within the dystrophin-glycoprotein complex (DGC), is thought to induce myofiber degeneration, although the downstream mechanism whereby membrane fragility leads to disease remains controversial. One potential mechanism that has yet to be definitively proven in vivo is that unregulated calcium influx initiates disease in dystrophic myofibers. Here we demonstrate that calcium itself is sufficient to cause a dystrophic phenotype in skeletal muscle independent of membrane fragility. For example, overexpression of transient receptor potential canonical 3 (TRPC3) and the associated increase in calcium influx resulted in a phenotype of muscular dystrophy nearly identical to that observed in DGC-lacking dystrophic disease models, including a highly similar molecular signature of gene expression changes. Furthermore, transgene-mediated inhibition of TRPC channels in mice dramatically reduced calcium influx and dystrophic disease manifestations associated with the mdx mutation (dystrophin gene) and deletion of the δ-sarcoglycan (Scgd) gene. These results demonstrate that calcium itself is sufficient to induce muscular dystrophy in vivo, and that TRPC channels are key disease initiators downstream of the unstable membrane that characterizes many types of muscular dystrophy.


Journal of Clinical Investigation | 2011

Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle

Sanjeewa A. Goonasekera; Chi K. Lam; Douglas P. Millay; Michelle A. Sargent; Roger J. Hajjar; Evangelia G. Kranias; Jeffery D. Molkentin

Muscular dystrophies (MDs) comprise a group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. The primary defect common to most MDs involves disruption of the dystrophin-glycoprotein complex (DGC). This leads to sarcolemmal instability and Ca(2+) influx, inducing cellular necrosis. Here we have shown that the dystrophic phenotype observed in δ-sarcoglycan–null (Sgcd(–/–)) mice and dystrophin mutant mdx mice is dramatically improved by skeletal muscle–specific overexpression of sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA1). Rates of myofiber central nucleation, tissue fibrosis, and serum creatine kinase levels were dramatically reduced in Sgcd(–/–) and mdx mice with the SERCA1 transgene, which also rescued the loss of exercise capacity in Sgcd(–/–) mice. Adeno-associated virus–SERCA2a (AAV-SERCA2a) gene therapy in the gastrocnemius muscle of Sgcd(–/–) mice mitigated dystrophic disease. SERCA1 overexpression reversed a defect in sarcoplasmic reticulum Ca(2+) reuptake that characterizes dystrophic myofibers and reduced total cytosolic Ca(2+). Further, SERCA1 overexpression almost completely rescued the dystrophic phenotype in a mouse model of MD driven solely by Ca(2+) influx. Mitochondria isolated from the muscle of SERCA1-Sgcd(–/–) mice were no longer swollen and calpain activation was reduced, suggesting protection from Ca(2+)-driven necrosis. Our results suggest a novel therapeutic approach using SERCA1 to abrogate the altered intracellular Ca(2+) levels that underlie most forms of MD.


The FASEB Journal | 2005

Heat- and anesthesia-induced malignant hyperthermia in an RyR1 knock-in mouse

Mihail G. Chelu; Sanjeewa A. Goonasekera; William J. Durham; Wei Tang; John D. Lueck; Joyce Riehl; Isaac N. Pessah; Pumin Zhang; Meenakshi B. Bhattacharjee; Robert T. Dirksen; Susan L. Hamilton

Malignant hyperthermia (MH) is a life‐threatening disorder characterized by skeletal muscle rigidity and elevated body temperature in response to halogenated anesthetics such as isoflurane or halothane. Mutation of tyrosine 522 of RyR1 (the predominant skeletal muscle calcium release channel) to serine has been associated with human malignant hyperthermia. In the present study, mice created harboring this mutation were found to represent the first murine model of human malignant hyperthermia. Mice homozygous for the Y522S mutation exhibit skeletal defects and die during embryonic development or soon after birth. Heterozygous mice, which correspond to the human occurrence of this mutation, are MH susceptible, experiencing whole body contractions and elevated core temperatures in response to isoflurane exposure or heat stress. Skeletal muscles from heterozygous mice exhibit increased susceptibility to caffeine‐ and heat‐induced contractures in vitro. In addition, the heterozygous expression of the mutation results in enhanced RyR1 sensitivity to activation by temperature, caffeine, and voltage but not uncompensated sarcoplasmic reticulum calcium leak or store depletion. We conclude that the heterozygous expression of the Y522S mutation confers susceptibility to both heat‐ and anesthetic‐induced MH responses.


Journal of Clinical Investigation | 2012

Decreased cardiac L-type Ca 2+channel activity induces hypertrophy and heart failure in mice

Sanjeewa A. Goonasekera; Karin Hammer; Mannix Auger-Messier; Ilona Bodi; Xiongwen Chen; Hongyu Zhang; Steven Reiken; John W. Elrod; Robert N. Correll; Allen J. York; Michelle A. Sargent; Franz Hofmann; Sven Moosmang; Andrew R. Marks; Steven R. Houser; Donald M. Bers; Jeffery D. Molkentin

Antagonists of L-type Ca²⁺ channels (LTCCs) have been used to treat human cardiovascular diseases for decades. However, these inhibitors can have untoward effects in patients with heart failure, and their overall therapeutic profile remains nebulous given differential effects in the vasculature when compared with those in cardiomyocytes. To investigate this issue, we examined mice heterozygous for the gene encoding the pore-forming subunit of LTCC (calcium channel, voltage-dependent, L type, α1C subunit [Cacna1c mice; referred to herein as α1C⁻/⁺ mice]) and mice in which this gene was loxP targeted to achieve graded heart-specific gene deletion (termed herein α1C-loxP mice). Adult cardiomyocytes from the hearts of α1C⁻/⁺ mice at 10 weeks of age showed a decrease in LTCC current and a modest decrease in cardiac function, which we initially hypothesized would be cardioprotective. However, α1C⁻/⁺ mice subjected to pressure overload stimulation, isoproterenol infusion, and swimming showed greater cardiac hypertrophy, greater reductions in ventricular performance, and greater ventricular dilation than α1C⁺/⁺ controls. The same detrimental effects were observed in α1C-loxP animals with a cardiomyocyte-specific deletion of one allele. More severe reductions in α1C protein levels with combinatorial deleted alleles produced spontaneous cardiac hypertrophy before 3 months of age, with early adulthood lethality. Mechanistically, our data suggest that a reduction in LTCC current leads to neuroendocrine stress, with sensitized and leaky sarcoplasmic reticulum Ca²⁺ release as a compensatory mechanism to preserve contractility. This state results in calcineurin/nuclear factor of activated T cells signaling that promotes hypertrophy and disease.

Collaboration


Dive into the Sanjeewa A. Goonasekera's collaboration.

Top Co-Authors

Avatar

Jeffery D. Molkentin

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle A. Sargent

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Federica Accornero

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Allen J. York

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan L. Hamilton

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Adam R. Burr

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge