Sanna Hokkanen
Lappeenranta University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanna Hokkanen.
Water Research | 2016
Sanna Hokkanen; Amit Bhatnagar; Mika Sillanpää
In recent decades, increased domestic, agricultural and industrial activities worldwide have led to the release of various pollutants, such as toxic heavy metals, inorganic anions, organics, micropollutants and nutrients into the aquatic environment. The removal of these wide varieties of pollutants for better quality of water for various activities is an emerging issue and a robust and eco-friendly treatment technology is needed for the purpose. It is well known that cellulosic materials can be obtained from various natural sources and can be employed as cheap adsorbents. Their adsorption capacities for heavy metal ions and other aquatic pollutants can be significantly affected upon chemical treatment. In general, chemically modified cellulose exhibits higher adsorption capacities for various aquatic pollutants than their unmodified forms. Numerous chemicals have been used for cellulose modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. This paper reviews the current state of research on the use of cellulose, a naturally occurring material, its modified forms and their efficacy as adsorbents for the removal of various pollutants from waste streams. In this review, an extensive list of various cellulose-based adsorbents from literature has been compiled and their adsorption capacities under various conditions for the removal of various pollutants, as available in the literature, are presented along with highlighting and discussing the key advancement on the preparation of cellulose-based adsorbents. It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of these adsorbents on a commercial scale, leading to the improvement of pollution control.
Environmental Technology | 2014
Sanna Hokkanen; Eveliina Repo; Amit Bhatnagar; Walter Z. Tang; Mika Sillanpää
In the present study, microfibrillated cellulose (MFC) was modified by aminopropyltriethoxysilane (APS), hydroxy-carbonated apatite (HAP), or epoxy in order to produce novel nanostructured adsorbents for the removal of hydrogen sulphide (H2S) from the aqueous solutions. Structural properties of the modified MFC materials were examined using a scanning electron microscope, Fourier transform infrared spectroscopy and acid/base titration. These methods were used to verify the presence of nanostructures on the adsorbents surfaces as well as functionalities suitable for H2S adsorption. Adsorption of H2S by prepared adsorbents was investigated in batch mode under different experimental conditions, i.e. varying pH and H2S concentrations. H2S uptake was found to be 103.95, 13.38 and 12.73 mg/g by APS/MFC, HAP/MFC and epoxy/MFC, respectively from 80 mg/L H2S solution. The equilibrium data were best described by the Langmuir isotherm for HAP/MFC and APS/MFC and the Sips isotherm for epoxy/MFC.
Environmental Technology | 2018
Sanna Hokkanen; Amit Bhatnagar; Ari Koistinen; Teija Kangas; Ulla Lassi; Mika Sillanpää
ABSTRACT In the present study, the adsorption of sulfates of sodium sulfate (Na2SO4) and sodium lauryl sulfate (SLS) by calcium hydroxyapatite-modified microfibrillated cellulose was studied in the aqueous solution. The adsorbent was characterized using elemental analysis, Fourier transform infrared, scanning electron microscope and elemental analysis in order to gain the information on its structure and physico-chemical properties. The adsorption studies were conducted in batch mode. The effects of solution pH, contact time, the initial concentration of sulfate and the effect of competing anions were studied on the performance of synthesized adsorbent for sulfate removal. Adsorption kinetics indicated very fast adsorption rate for sulfate of both sources (Na2SO4 and SLS) and the adsorption process was well described by the pseudo-second-order kinetic model. Experimental maximum adsorption capacities were found to be 34.53 mg g−1 for sulfates of SLS and 7.35 mg g−1 for sulfates of Na2SO4. The equilibrium data were described by the Langmuir, Sips, Freundlich, Toth and Redlich–Peterson isotherm models using five different error functions.
International Journal of Biological Macromolecules | 2018
Sanna Hokkanen; Amit Bhatnagar; Varsha Srivastava; Valtteri Suorsa; Mika Sillanpää
A novel hydroxyapatite-bentonite clay-nanocellulose (CHA-BENT-NCC) composite material was successfully prepared as adsorbent for the removal of Ni2+, Cd2+ and PO43- from aqueous solutions. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR) were used for characterization of the adsorbent. The effect of pH, contact time, temperature, and initial adsorbate concentration were studied for optimization purpose. The adsorption behavior of the investigated ions were well described by the Freundlich adsorption model, and the maximum adsorption capacity for Ni2+, Cd2+ and PO43- was estimated to be 29.46 mmol/g, 10.34 mmol/g and 4.90 mmol/g, respectively. Desorption efficiency was achieved by treatment with 0.01 M HNO3 for metals and 0.10 M NaOH for PO43-. Five adsorption-desorption cycles were performed without significant decrease in adsorption capacities. The CHA-BENT-NCC material proved to be a very effective adsorption material for the treatment of mining water also from a copper mine in Finland.
Chemical Engineering Journal | 2013
Sanna Hokkanen; Eveliina Repo; Mika Sillanpää
Cellulose | 2014
Sanna Hokkanen; Eveliina Repo; Terhi Suopajärvi; Henrikki Liimatainen; Jouko Niinimaa; Mika Sillanpää
Chemical Engineering Journal | 2016
Sanna Hokkanen; Amit Bhatnagar; Eveliina Repo; Song Lou; Mika Sillanpää
Chemical Engineering Journal | 2015
Sanna Hokkanen; Eveliina Repo; Song Lou; Mika Sillanpää
Chemical Engineering Journal | 2014
Sanna Hokkanen; Eveliina Repo; Lena Johansson Westholm; Song Lou; Tuomo Sainio; Mika Sillanpää
Chemical Engineering Journal | 2014
Amarendra Dhar Dwivedi; Shashi Prabha Dubey; Sanna Hokkanen; Rahimeh Naviri Fallah; Mika Sillanpää