Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanna M. Mäkelä is active.

Publication


Featured researches published by Sanna M. Mäkelä.


Journal of Virology | 2010

Pandemic H1N1 2009 Influenza A Virus Induces Weak Cytokine Responses in Human Macrophages and Dendritic Cells and Is Highly Sensitive to the Antiviral Actions of Interferons

Pamela Österlund; Jaana Pirhonen; Niina Ikonen; Esa Rönkkö; Mari Strengell; Sanna M. Mäkelä; Mia Broman; Ole J. Hamming; Rune Hartmann; Thedi Ziegler; Ilkka Julkunen

ABSTRACT In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-α/β]) and type III (IFN-λ1 to -λ3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-α) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-α and IFN-β inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-λ3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-λ3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges.


Journal of Leukocyte Biology | 2009

Multiple signaling pathways contribute to synergistic TLR ligand‐dependent cytokine gene expression in human monocyte‐derived macrophages and dendritic cells

Sanna M. Mäkelä; Mari Strengell; Taija E. Pietilä; Pamela Österlund; Ilkka Julkunen

TLRs are innate immune receptors that recognize pathogen‐associated structures. Binding of ligands to different TLRs can induce the production of proinflammatory cytokines in a synergistic manner. We have analyzed the molecular mechanisms of synergy in TLR ligand‐stimulated human monocyte‐derived macrophages and dendritic cells (moDCs). Stimulation of moDCs with the TLR8 ligand together with the TLR3 or TLR4 ligand led to synergistic IL‐6, IL‐10, IL‐12, and TNF‐α mRNA expression and cytokine production. DNA‐binding assays showed that TLR3 and TLR8 stimulation induced binding of multiple IFN regulatory factor (IRF) and STAT transcription factors to the IL‐12p35 gene promoter IFN‐stimulated response element in moDCs and macrophages but with different binding profiles and kinetics. We also demonstrate that NF‐κB, MAPKs and PI‐3K pathways have an important role in TLR‐induced cytokine gene expression, as pharmacological inhibitors of these signaling pathways inhibited TLR3, TLR4, and TLR8 ligand‐induced cytokine mRNA expression and protein production. Especially, synergistic IL‐12p70 production was abolished completely in NF‐κB, MAPK p38, and PI‐3K inhibitor‐treated moDCs. Our data suggest that TLR‐dependent, synergistic cytokine gene expression results from enhanced activation and cooperation among NF‐κB, IRF, MAPK, PI‐3K, and STAT signaling pathways.


Molecular Immunology | 2011

TLR ligands induce synergistic interferon-β and interferon-λ1 gene expression in human monocyte-derived dendritic cells

Sanna M. Mäkelä; Pamela Österlund; Ilkka Julkunen

Toll-like receptors (TLRs) are pattern-recognition receptors of the innate immune system that recognize various pathogen-associated molecules. TLR ligands are potent activators of immune cells and certain TLR ligands have a synergistic ability to induce the production of pro-inflammatory cytokines. In the present study we have analyzed the potential synergy between TLR3, TLR4 and TLR7/8 ligands in type I and type III interferon (IFN) gene expression in human monocyte-derived dendritic cells (moDCs). We show that stimulation of moDCs with TLR7/8 ligand R848 together with TLR3 or TLR4 ligands, polyI:C or LPS, respectively, leads to a synergistic expression of IFN-β and IFN-λ1 mRNAs. Neutralization of type I IFNs as well as IFN priming prior to stimulation suggest that IFN-dependent positive feedback loop is at least partly responsible for the mechanism of synergy. Enhanced expression of TLR3 and especially TLR7, which are both under the regulation of type I IFNs, correlated to synergistic TLR ligand-dependent induction of IFN-β and IFN-λ1 genes. NF-κB, PI3 kinase and MAP kinase pathways were involved in TLR ligand-induced IFN gene expression as evidenced by pharmacological signaling inhibitors. The data indicates that IFNs contribute to TLR-dependent gene activation in human DCs stimulated with multiple TLR ligands.


Journal of Virology | 2015

RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression.

Sanna M. Mäkelä; Pamela Österlund; Veera Westenius; Sinikka Latvala; Michael S. Diamond; Michael Gale; Ilkka Julkunen

ABSTRACT Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of influenza B virus by human macrophages. We show that influenza B virus induces IRF3 activation, leading to IFN gene expression after viral RNPs (vRNPs) are released into the cytosol and are recognized by RIG-I receptor, meaning that the incoming influenza B virus is already able to activate IFN gene expression. In contrast, influenza A (H3N2) virus failed to activate IRF3 at very early times of infection, suggesting that there are differences in innate immune recognition between influenza A and B viruses.


PLOS ONE | 2014

Novel avian influenza A (H7N9) virus induces impaired interferon responses in human dendritic cells.

Veera Arilahti; Sanna M. Mäkelä; Janne Tynell; Ilkka Julkunen; Pamela Österlund

In March 2013 a new avian influenza A(H7N9) virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs). We observed that in H7N9 virus-infected cells, interferon (IFN) responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced “cytokine storm” seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs.


Virology | 2014

Efficient replication and strong induction of innate immune responses by H9N2 avian influenza virus in human dendritic cells

Veera Westenius; Sanna M. Mäkelä; Thedi Ziegler; Ilkka Julkunen; Pamela Österlund

Avian influenza A (H9N2) viruses have occasionally been identified in humans with upper respiratory tract infections. The novel H7N9/2013 virus identified in China shows that a low pathogenic avian influenza (LPAI) virus can be highly pathogenic in humans. Therefore, it is important to understand virus-host cell interactions and immune responses triggered by LPAI viruses in humans. We found that LPAI A/Hong Kong/1073/99 (H9N2) virus replicated efficiently in human dendritic cells (DCs). The H9N2 virus induced strong IFN gene expression although with different kinetics than seasonal influenza A/Beijing/353/89 (H3N2) virus. IFN inducible antiviral proteins were produced in H9N2 virus-infected cells at the same level as in H3N2 infection. The H9N2 virus was extremely sensitive to the antiviral actions of type I IFNs. These results indicate that the avian influenza H9N2 virus is inducing a strong antiviral IFN response in human DCs.


WOS | 2014

Dynamin inhibition interferes with inflammasome activation and cytokine gene expression in Streptococcus pyogenes-infected human macrophages

Sinikka Latvala; Sanna M. Mäkelä; M. Miettinen; Emmanuelle Charpentier; Ilkka Julkunen

In the present study, we have analysed the ability of Streptococcus pyogenes [Group A streptococcus (GAS)] to activate the NACHT‐domain‐, leucine‐rich repeat‐ and PYD‐containing protein 3 (NALP3) inflammasome complex in human monocyte‐derived macrophages and the molecules and signalling pathways involved in GAS‐induced inflammatory responses. We focused upon analysing the impact of dynamin‐dependent endocytosis and the role of major streptococcal virulence factors streptolysin O (SLO) and streptolysin S (SLS) in the immune responses induced by GAS. These virulence factors are involved in immune evasion by forming pores in host cell membranes, and aid the bacteria to escape from the endosome–lysosome pathway. We analysed cytokine gene expression in human primary macrophages after stimulation with live or inactivated wild‐type GAS as well as with live SLO and SLS defective bacteria. Interleukin (IL)‐1β, IL‐10, tumour necrosis factor (TNF)‐α and chemokine (C‐X‐C motif) ligand (CXCL)‐10 cytokines were produced after bacterial stimulation in a dose‐dependent manner and no differences in cytokine levels were seen between live, inactivated or mutant bacteria. These data suggest that streptolysins or other secreted bacterial products are not required for the inflammatory responses induced by GAS. Our data indicate that inhibition of dynamin‐dependent endocytosis in macrophages attenuates the induction of IL‐1β, TNF‐α, interferon (IFN)‐β and CXCL‐10 mRNAs. We also observed that pro‐IL‐1β protein was expressed and efficiently cleaved into mature‐IL‐1β via inflammasome activation after bacterial stimulation. Furthermore, we demonstrate that multiple signalling pathways are involved in GAS‐stimulated inflammatory responses in human macrophages.


Frontiers in Immunology | 2018

Highly Pathogenic H5N1 Influenza A Virus Spreads Efficiently in Human Primary Monocyte-Derived Macrophages and Dendritic Cells

Veera Westenius; Sanna M. Mäkelä; Ilkka Julkunen; Pamela Österlund

Influenza A viruses cause recurrent epidemics and occasional global pandemics. Wild birds are the natural reservoir of influenza A virus from where the virus can be transmitted to poultry or to mammals including humans. Mortality among humans in the highly pathogenic avian influenza H5N1 virus infection is even 60%. Despite intense research, there are still open questions in the pathogenicity of the H5N1 virus in humans. To characterize the H5N1 virus infection in human monocyte-derived macrophages (Mɸs) and dendritic cells (DCs), we used human isolates of highly pathogenic H5N1/2004 and H5N1/1997 and low pathogenic H7N9/2013 avian influenza viruses in comparison with a seasonal H3N2/1989 virus. We noticed that the H5N1 viruses have an overwhelming ability to replicate and spread in primary human immune cell cultures, and even the addition of trypsin did not equalize the infectivity of H7N9 or H3N2 viruses to the level seen with H5N1 virus. H5N1 virus stocks contained more often propagation-competent viruses than the H7N9 or H3N2 viruses. The data also showed that human DCs and Mɸs maintain 1,000- and 10,000-fold increase in the production of infectious H5N1 virus, respectively. Both analyzed highly pathogenic H5N1 viruses showed multi-cycle infection in primary human DCs and Mɸs, whereas the H3N2 and H7N9 viruses were incapable of spreading in immune cells. Interestingly, H5N1 virus was able to spread extremely efficiently despite the strong induction of antiviral interferon gene expression, which may in part explain the high pathogenicity of H5N1 virus infection in humans.


Cytokine | 2015

ID: 98: H5N1 and H7N9 viruses induce impaired antiviral state in human immune cells by different mechanisms

Veera Westenius; Sanna M. Mäkelä; Ilkka Julkunen; Pamela Österlund


Cytokine | 2015

ID: 201: Live cell imaging-based studies of dynamics of antiviral signaling

Veera Westenius; Sanna M. Mäkelä; Pamela Österlund

Collaboration


Dive into the Sanna M. Mäkelä's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela Österlund

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Veera Westenius

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Mari Strengell

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Sinikka Latvala

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thedi Ziegler

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Veera Arilahti

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Michael Gale

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge