Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanna Niinivehmas is active.

Publication


Featured researches published by Sanna Niinivehmas.


Biochimica et Biophysica Acta | 2013

2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes

Terhi Maula; Y. Jenny E. Isaksson; Sara García-Linares; Sanna Niinivehmas; Olli T. Pentikäinen; Mayuko Kurita; Shou Yamaguchi; Tetsuya Yamamoto; Shigeo Katsumura; José G. Gavilanes; Álvaro Martínez-del-Pozo; J. Peter Slotte

Sticholysin II (StnII) is a pore-forming toxin from the sea anemone Stichodactyla heliantus which belongs to the large actinoporin family. The toxin binds to sphingomyelin (SM) containing membranes, and shows high binding specificity for this lipid. In this study, we have examined the role of the hydrogen bonding groups of the SM long-chain base (i.e., the 2NH and the 3OH) for StnII recognition. We prepared methylated SM-analogs which had reduced hydrogen bonding capability from 2NH and 3OH. Both surface plasmon resonance experiments, and isothermal titration calorimetry measurements indicated that StnII failed to bind to bilayers containing methylated SM-analogs, whereas clear binding was seen to SM-containing bilayers. StnII also failed to induce calcein release (i.e., pore formation) from vesicles made to contain methylated SM-analogs, but readily induced calcein release from SM-containing vesicles. Molecular modeling of SM docked to the phosphocholine binding site of StnII indicated that the 2NH and 3OH groups were likely to form a hydrogen bond with Tyr135. In addition, it appeared that Tyr111 and Tyr136 could donate hydrogen bonds to phosphate oxygen, thus stabilizing SM binding to the toxin. We conclude that the interfacial hydrogen bonding properties of SM, in addition to the phosphocholine head group, are crucial for high-affinity SM/StnII-interaction.


Journal of Molecular Graphics & Modelling | 2015

Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening

Salla I. Virtanen; Sanna Niinivehmas; Olli T. Pentikäinen

In drug discovery the reliable prediction of binding free energies is of crucial importance. Methods that combine molecular mechanics force fields with continuum solvent models have become popular because of their high accuracy and relatively good computational efficiency. In this research we studied the performance of molecular mechanics generalized Born surface area (MM-GBSA), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), and solvated interaction energy (SIE) both in their virtual screening efficiency and their ability to predict experimentally determined binding affinities for five different protein targets. The protein-ligand complexes were derived with two different approaches important in virtual screening: molecular docking and ligand-based similarity search methods. The results show significant differences between the different binding energy calculation methods. However, the length of the molecular dynamics simulation was not of crucial importance for accuracy of results.


Journal of Chemical Information and Modeling | 2011

Comparison of Virtual High-Throughput Screening Methods for the Identification of Phosphodiesterase-5 Inhibitors

Sanna Niinivehmas; Salla I. Virtanen; Jukka V. Lehtonen; Pekka A. Postila; Olli T. Pentikäinen

Reliable and effective virtual high-throughput screening (vHTS) methods are desperately needed to minimize the expenses involved in drug discovery projects. Here, we present an improvement to the negative image-based (NIB) screening: the shape, the electrostatics, and the solvation state of the target proteins ligand-binding site are included into the vHTS. Additionally, the initial vHTS results are postprocessed with molecular mechanics/generalized Born surface area (MMGBSA) calculations to estimate the favorability of ligand-protein interactions. The results show that docking produces very good early enrichment for phosphodiesterase-5 (PDE-5); however, in general, the NIB and the ligand-based screening performed better with or without the added electrostatics. Furthermore, the postprocessing of the NIB screening results using MMGBSA calculations improved the early enrichment for the PDE-5 considerably, thus, making hit discovery affordable.


Journal of Cheminformatics | 2016

Rocker: Open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization

Sakari Lätti; Sanna Niinivehmas; Olli T. Pentikäinen

Abstract Receiver operating characteristics (ROC) curve with the calculation of area under curve (AUC) is a useful tool to evaluate the performance of biomedical and chemoinformatics data. For example, in virtual drug screening ROC curves are very often used to visualize the efficiency of the used application to separate active ligands from inactive molecules. Unfortunately, most of the available tools for ROC analysis are implemented into commercially available software packages, or are plugins in statistical software, which are not always the easiest to use. Here, we present Rocker, a simple ROC curve visualization tool that can be used for the generation of publication quality images. Rocker also includes an automatic calculation of the AUC for the ROC curve and Boltzmann-enhanced discrimination of ROC (BEDROC). Furthermore, in virtual screening campaigns it is often important to understand the early enrichment of active ligand identification, for this Rocker offers automated calculation routine. To enable further development of Rocker, it is freely available (MIT-GPL license) for use and modifications from our web-site (http://www.jyu.fi/rocker).Graphical Abstract


Biochimica et Biophysica Acta | 2012

Structure-activity relationship of sphingomyelin analogs with sphingomyelinase from Bacillus cereus

Christian Sergelius; Sanna Niinivehmas; Terhi Maula; Mayuko Kurita; Shou Yamaguchi; Tetsuya Yamamoto; Shigeo Katsumura; Olli T. Pentikäinen; J. Peter Slotte

The aim of this study was to examine how structural properties of different sphingomyelin (SM) analogs affected their substrate properties with sphingomyelinase (SMase) from Bacillus cereus. Using molecular docking and dynamics simulations (for SMase-SM complex), we then attempted to explain the relationship between SM structure and enzyme activity. With both micellar and monolayer substrates, 3O-methylated SM was found not to be degraded by the SMase. 2N-methylated SM was a substrate, but was degraded at about half the rate of its 2NH-SM control. PhytoPSM was readily hydrolyzed by the enzyme. PSM lacking one methyl in the phosphocholine head group was a good substrate, but PSM lacking two or three methyls failed to act as substrates for SMase. Based on literature data, and our docking and MD simulations, we conclude that the 3O-methylated PSM fails to interact with Mg(2+) and Glu53 in the active site, thus preventing hydrolysis. Methylation of 2NH was not crucial for binding to the active site, but appeared to interfere with an induced fit activation of the SMase via interaction with Asp156. An OH on carbon 4 in the long-chain base of phytoPSM appeared not to interfere with the 3OH interacting with Mg(2+) and Glu53 in the active site, and thus did not interfere with catalysis. Removing two or three methyls from the PSM head group apparently increased the positive charge on the terminal N significantly, which most likely led to ionic interactions with Glu250 and Glu155 adjacent to the active site. This likely interaction could have misaligned the SM substrate and hindered proper catalysis.


Journal of Molecular Graphics & Modelling | 2016

Identification of estrogen receptor α ligands with virtual screening techniques

Sanna Niinivehmas; Elangovan Manivannan; Sanna Rauhamäki; Juhani Huuskonen; Olli T. Pentikäinen

Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα). The comparison of the methods helps to demonstrate the differences in their ability to identify active molecules. For example, structure-based methods identified an already known active ligand from the widely-used bechmarking decoy molecule set. Although prospective VS against one commercially available database with around 100,000 drug-like molecules did not retrieve many testworthy hits, one novel hit molecule with pIC50 value of 6.6, was identified. Furthermore, our small in-house compound collection of easy-to-synthesize molecules was virtually screened against ERα, yielding to five hit candidates, which were found to be active in vitro having pIC50 values from 5.5 to 6.5.


Biochimica et Biophysica Acta | 2013

Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone

Mikko Ylilauri; Elina Mattila; Elisa M. Nurminen; Jarmo Käpylä; Sanna Niinivehmas; Juha A. E. Määttä; Ulla Pentikäinen; Johanna Ivaska; Olli T. Pentikäinen

T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics.


Molecular Pharmaceutics | 2018

Molecular Docking-Based Design and Development of a Highly Selective Probe Substrate for UDP-glucuronosyltransferase 1A10

Risto O. Juvonen; Sanna Rauhamäki; Sami Kortet; Sanna Niinivehmas; Johanna Troberg; Aleksanteri Petsalo; Juhani Huuskonen; Hannu Raunio; Moshe Finel; Olli T. Pentikäinen

Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescent glucuronides by UGT1A10, four of them highly selectively by this enzyme. A new UGT1A10 mutant, 1A10-H210M, was prepared on the basis of the newly constructed model. Glucuronidation kinetics of the new compounds, in both wild-type and mutant UGT1A10 enzymes, revealed variable effects of the mutation. All six new C3-substituted 7-hydroxycoumarins were glucuronidated faster by human intestine than by liver microsomes, supporting the results obtained with recombinant UGTs. The most selective 4-(dimethylamino)phenyl and triazole C3-substituted 7-hydroxycoumarins could be very useful substrates in studying the function and expression of the human UGT1A10.


Frontiers in chemistry | 2018

Structure-Activity Relationship Analysis of 3-phenylcoumarin-Based Monoamine Oxidase B Inhibitors

Sanna Rauhamäki; Pekka A. Postila; Sanna Niinivehmas; Sami Kortet; Emmi Schildt; Mira Pasanen; Elangovan Manivannan; Mira Ahinko; Pasi Koskimies; Niina Nyberg; Pasi Huuskonen; Elina Multamäki; Markku Pasanen; Risto O. Juvonen; Hannu Raunio; Juhani Huuskonen; Olli T. Pentikäinen

Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinsons disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM−1 μM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2018

Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives

Sanna Niinivehmas; Pekka A. Postila; Sanna Rauhamäki; Elangovan Manivannan; Sami Kortet; Mira Ahinko; Pasi Huuskonen; Niina Nyberg; Pasi Koskimies; Sakari Lätti; Elina Multamäki; Risto O. Juvonen; Hannu Raunio; Markku Pasanen; Juhani Huuskonen; Olli T. Pentikäinen

Abstract A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-β-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5 µM and, furthermore, three of them produced ≥68% inhibition at 1 µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-β-hydroxysteroid dehydrogenase 2 – a requirement for lowering effective oestradiol levels in vivo. Moreover, the analysis led to the synthesis and discovery of 3-imidazolecoumarin as a potent aromatase inhibitor. In short, coumarin core can be tailored with specific ring and polar moiety substitutions to block either the sulphatase pathway or the aromatase pathway for treating breast cancer and endometriosis.

Collaboration


Dive into the Sanna Niinivehmas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sakari Lätti

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannu Raunio

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mira Ahinko

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Risto O. Juvonen

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge