Santanu Bose
University of Calcutta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Santanu Bose.
Science | 2013
Frederick M. Chester; Christie D. Rowe; Kohtaro Ujiie; James D. Kirkpatrick; Christine Regalla; Francesca Remitti; J. Casey Moore; Virginia G. Toy; Monica Wolfson-Schwehr; Santanu Bose; Jun Kameda; Jim Mori; Emily E. Brodsky; Nobuhisa Eguchi; Sean Toczko; Expedition; T Scientists
Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.
Science | 2013
Weiren Lin; Marianne Conin; John Moore; Frederick M. Chester; Yasuyuki Nakamura; Jim Mori; Louise Anderson; Emily E. Brodsky; Nobuhisa Eguchi; B. Cook; Tamara N. Jeppson; Monica Wolfson-Schwehr; Yoshinori Sanada; Shiro Saito; Yukari Kido; Takehiro Hirose; Jan H. Behrmann; Matt J. Ikari; Kohtaro Ujiie; Christie D. Rowe; James D. Kirkpatrick; Santanu Bose; Christine Regalla; Francesca Remitti; Virginia G. Toy; Patrick M. Fulton; Toshiaki Mishima; Tao Yang; Tianhaozhe Sun; Tsuyoshi Ishikawa
Stressed Out Large seismic events such as the 2011 magnitude 9.0 Tohoku-Oki earthquake can have profound effects not just on the severity of ground motion and tsunami generation, but also on the overall state of the crust in the surrounding regions. Lin et al. (p. 687) analyzed the stress 1 year after the Tohoku-Oki earthquake and compared it with the estimated stress state before the earthquake. In situ resistivity images were analyzed from three boreholes drilled into the crust across the plate interface where the earthquake occurred. Stress values indicate a nearly complete drop in stress following the earthquake such that the type of faulting above the plate boundary has changed substantially. These findings are consistent with observations that the sea floor moved nearly 50 meters during the earthquake. Borehole stress measurements indicate a nearly total stress drop in the region of largest slip. The 2011 moment magnitude 9.0 Tohoku-Oki earthquake produced a maximum coseismic slip of more than 50 meters near the Japan trench, which could result in a completely reduced stress state in the region. We tested this hypothesis by determining the in situ stress state of the frontal prism from boreholes drilled by the Integrated Ocean Drilling Program approximately 1 year after the earthquake and by inferring the pre-earthquake stress state. On the basis of the horizontal stress orientations and magnitudes estimated from borehole breakouts and the increase in coseismic displacement during propagation of the rupture to the trench axis, in situ horizontal stress decreased during the earthquake. The stress change suggests an active slip of the frontal plate interface, which is consistent with coseismic fault weakening and a nearly total stress drop.
Tectonics | 2015
James D. Kirkpatrick; Christie D. Rowe; Kohtaro Ujiie; J. Casey Moore; Christine Regalla; Francesca Remitti; Virginia G. Toy; Monica Wolfson-Schwehr; Jun Kameda; Santanu Bose; Frederick M. Chester
The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ∼7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary decollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ∼5–15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary decollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the decollement suggests that rupture to the trench may be characteristic of this margin.
Geological Society, London, Special Publications | 2015
Nibir Mandal; Santanu Bose; Amiya Baruah; Shamik Sarkar
Abstract This study investigates the first-order Himalayan mountain topography from the perspective of deep-crustal flow patterns in the Indo-Asia collision zone. Using a thin-viscous-sheet model we theoretically predict that flat hinterland topography with a stable elevation (Type I) can develop only when the lithospheric slab underthrusts with a threshold velocity (Vs*). For Vs>Vs*, the hinterland continuously gains in elevation, leading to Type II topography. This type is characterized by varying first-order surface slopes, but always facing the mountain front. Conversely, the elevated hinterland masses undergo gravity-driven subsidence, forming a topography (Type III) with characteristic backward surface slopes when Vs<Vs*. We evaluate Vs* as a function of: (i) the regional slope of the initial first-order surface topography (α); (ii) the angle of underthrusting (β); and (iii) the relative width of foreland plain (λ), assuming little effects of surface erosion. Our model shows two characteristic deep-crustal flow patterns: corner flow and vortex flow. The corner flow pattern, described by upwardly pointed hyperbolic streamlines, is responsible for Type II topography. Conversely, the vortex flow leads to Type III, whereas the transition between the two gives rise to Type I. This corner-to-vortex type flow transition commences on decreasing Vs.
Archive | 2009
Nibir Mandal; Atin Kumar Mitra; Santanu Bose
With advent of the plate tectonic theory geoscientists have taken a new turn in order to interpret the evolution of orogenic belts. As a consequence, a large volume of geodynamics models have emanated in recent times. In this paper we review some of the important models in context of the Himalayan-Tibetan system, which is believed to be the most spectacular collision-type orogenic belt. Studies on this system trend in diverse directions, covering surface topography to deep-crustal processes. Here we deal with theoretical and experimental models that address large-scale phenomena in orogens. Over the last two decades, geoscientists and geophysicists have extensively used wedge tectonic models to explain several tectonic processes in mountain chains, like sequential thrusting, folding and rock upliftments. The wedge models pivot principally on two considerations: 1) choice of boundary conditions and 2) rheology of the crust. In this review we classify the models into three rheological classes: Coulomb, plastic and viscous, and present the model results as a function of the boundary conditions.
Solid Earth Discussions | 2018
Fernando O. Marques; Nibir Mandal; Subhajit Ghosh; Giorgio Ranalli; Santanu Bose
The Himalayas are the archetype of continental collision, where a number of long-standing fundamental problems persist in the Greater Himalayan Sequence (GHS): (1) contemporaneous reverse and normal faulting, (2) inversion of metamorphic grade, (3) origin of high(HP) and ultrahigh-pressure (UHP) rocks, (4) mode of ductile extrusion and exhumation of HP and UHP rocks close to the GHS hanging wall, (5) flow kinematics in the subduction channel, and (6) tectonic overpressure, here defined as TOP = P/PL where P is total (dynamic) pressure and PL is lithostatic pressure. In this study we couple Himalayan geodynamics to numerical simulations to show how one single model, upward-tapering channel (UTC) flow, can be used to find a unified explanation for the evidence. The UTC simulates a flat-ramp geometry of the main underthrust faults, as proposed for many sections across the Himalayan continental subduction. Based on the current knowledge of the Himalayan subduction channel geometry and geological/geophysical data, the simulations predict that a UTC can be responsible for high TOP (> 2). TOP increases exponentially with a decrease in UTC mouth width, and with an increase in underthrusting velocity and channel viscosity. The highest overpressure occurs at depths <−60 km, which, combined with the flow configuration in the UTC, forces HP and UHP rocks to exhume along the channel’s hanging wall, as in the Himalayas. By matching the computed velocities and pressures with geological data, we constrain the GHS viscosity to be ≤ 1021 Pa s, and the effective convergence (transpression) to a value ≤ 10 %. Variations in channel dip over time may promote or inhibit exhumation (> or < 15, respectively). Viscous deformable walls do not affect overpressure significantly enough for a viscosity contrast (viscosity walls to viscosity channel) of the order of 1000 or 100. TOP in a UTC, however, is only possible if the condition at the bottom boundary is no-outlet pressure; otherwise it behaves as a leaking boundary that cannot retain dynamic pressure. However, the cold, thick, and strong lithospheres forming the Indian and Eurasian plates are a good argument against a leaking bottom boundary in a flat-ramp geometry, and therefore it is possible for overpressure to reach high values in the GHS.
Journal of Structural Geology | 2005
Fernando O. Marques; Rui Taborda; Santanu Bose; J. Antunes
Journal of Structural Geology | 2009
Santanu Bose; Nibir Mandal; Dilip K. Mukhopadhyay; Premanand Mishra
Journal of Structural Geology | 2014
Santanu Bose; Nibir Mandal; Subhrangsu K. Acharyya; Subhajit Ghosh; Puspendu Saha
Earth-Science Reviews | 2014
Fernando O. Marques; Nibir Mandal; Rui Taborda; J. Antunes; Santanu Bose