Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Santanu Majumder is active.

Publication


Featured researches published by Santanu Majumder.


Water Research | 2010

Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India.

Debashis Chatterjee; Dipti Halder; Santanu Majumder; Ashis Biswas; Bibhash Nath; Prosun Bhattacharya; Subhamoy Bhowmick; Aishwarya Mukherjee-Goswami; Debasree Saha; Rasmani Hazra; Palash B. Maity; Debankur Chatterjee; Abhijit Mukherjee; Jochen Bundschuh

Arsenic (As) induced identifiable health outcomes are now spreading across Indian subcontinent with continuous discovery of high As concentrations in groundwater. This study deals with groundwater hydrochemistry vis-à-vis As exposure assessment among rural population in Chakdaha block, West Bengal, India. The water quality survey reveals that 96% of the tubewells exceed WHO guideline value (10 μg/L of As). The groundwaters are generally anoxic (-283 to -22 mV) with circum-neutral pH (6.3 to 7.8). The hydrochemistry is dominated by HCO(3)(-) (208 to 440 mg/L), Ca(2+) (79 to 178 mg/L) and Mg(2+) (17 to 45 mg/L) ions along with high concentrations of As(T) (As total, below detection limit to 0.29 mg/L), Fe(T) (Fe total, 1.2 to 16 mg/L), and Fe(II) (0.74 to 16 mg/L). The result demonstrates that Fe(II)-Fe(III) cycling is the dominant process for the release of As from aquifer sediments to groundwater (and vice versa), which is mainly controlled by the local biogeochemical conditions. The exposure scenario reveals that the consumption of groundwater and rice are the major pathways of As accumulation in human body, which is explained by the dietary habit of the surveyed population. Finally, regular awareness campaign is essential as part of the management and prevention of health outcomes.


Journal of Hazardous Materials | 2013

Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences.

Subhamoy Bhowmick; Bibhash Nath; Dipti Halder; Ashis Biswas; Santanu Majumder; Priyanka Mondal; Sudipta Chakraborty; Jerome O. Nriagu; Prosun Bhattacharya; Mònica Iglesias; Gabriela Roman-Ross; Debendranath Guha Mazumder; Jochen Bundschuh; Debashis Chatterjee

A comparative hydrogeochemical study was carried out in West Bengal, India covering three physiographic regions, Debagram and Chakdaha located in the Bhagirathi-Hooghly alluvial plain and Baruipur in the delta front, to demonstrate the control of geogenic and anthropogenic influences on groundwater arsenic (As) mobilization. Groundwater samples (n = 90) from tube wells were analyzed for different physico-chemical parameters. The low redox potential (Eh = -185 to -86 mV) and dominant As(III) and Fe(II) concentrations are indicative of anoxic nature of the aquifer. The shallow (<100 m) and deeper (>100 m) aquifers of Bhagirathi-Hooghly alluvial plains as well as shallow aquifers of delta front are characterized by Ca(2+)HCO3(-) type water, whereas Na(+) and Cl(-) enrichment is found in the deeper aquifer of delta front. The equilibrium of groundwater with respect to carbonate minerals and their precipitation/dissolution seems to be controlling the overall groundwater chemistry. The low SO4(2-) and high DOC, PO4(3-) and HCO3(-) concentrations in groundwater signify ongoing microbial mediated redox processes favoring As mobilization in the aquifer. The As release is influenced by both geogenic (i.e. geomorphology) and anthropogenic (i.e. unsewered sanitation) processes. Multiple geochemical processes, e.g., Fe-oxyhydroxides reduction and carbonate dissolution, are responsible for high As occurrence in groundwaters.


Mineralogical Magazine | 2008

The geochemical and isotopic composition of ground waters in West Bengal: tracing ground-surface water interaction and its role in arsenic release

Michael Lawson; Chris J. Ballentine; David A. Polya; Adrian J. Boyce; Debapriya Mondal; Debashis Chatterjee; Santanu Majumder; Ashis Biswas

Abstract In many areas of south and south-eastern Asia, concentrations of As in ground water have been found to exceed the WHO maximum concentration limit of 10 μg/l. This is adversely affecting the health of millions of people and has grave current and future health implications. It has recently been suggested that extensive abstraction of ground water in these areas may accelerate the release of As to ground water. This study uses geochemical and isotopic data to assess this hypothesis. The area investigated in this study is in the Chakdaha block of the Nadia District, West Bengal. The ground water is predominantly of the Ca-Mg-HCO3 type, although some samples were found to contain elevated concentrations of Na, Cl and SO4. This is thought to reflect a greater degree of water-rock interaction at the locations of these particular samples. Arsenic concentrations exceeded the national limit of 50 μg/l in 13 of the 22 samples collected. Four of the 13 samples with high As were recovered from tubewells with depths of 60 m or more. Shallow ground water samples were found to have a stable isotopic composition which falls subparallel to the Global Meteoric Water Line. This probably represents a contribution of evaporated surface water to the ground water, possibly from surface ponds or re-infiltrating irrigation water. Deep ground water, conversely, was shown to have a composition that closely reflects that of meteoric water. The data presented in this study suggest that, whilst the drawdown of surface waters may drive As release in shallow ground waters, it is not responsible for driving As release in deep ground water. However, local abstraction may have resulted in changes in the ground water flow regime of the area, with contaminated shallow ground waters being drawn into previously uncontaminated deep aquifers.


Archive | 2015

An Insight into the Spatio-vertical Heterogeneity of Dissolved Arsenic in Part of the Bengal Delta Plain Aquifer in West Bengal (India)

Santanu Majumder; Ashis Biswas; Harald Neidhardt; Simita Sarkar; Zsolt Berner; Subhamoy Bhowmick; A Mukherjee; Debankur Chatterjee; Sudipta Chakraborty; Bibhash Nath; Debashis Chatterjee

Naturally occurring, carcinogenic, arsenic (As) is omnipresent in hydrological systems, and is considered as the most serious abiotic contaminant of groundwater in several parts of the world (Smedley and Kinniburgh, Appl Geochem 17:517–56, 2002; Chatterjee et al., Environ Geol 49:188–206, 2005; Charlet et al., Appl Geochem 22:1273–1292, 2007; Mukherjee et al., J Contam Hydrol 99:1–7, 2008a; Neumann et al., Nat Geosci 3:46–52, 2010 and references therein). Holocene aquifers of south-east Asia (mostly shallow, <50 m) often contain high As groundwater. The groundwater is predominantly used for irrigation and domestic purposes, e.g., cooking, drinking and bathing (Bhattacharya et al., J Water Resour Dev 13:79–92, 1997; Bhattacharyya et al., Mol Cell Biochem 253:347–355, 2003a; Charlet et al., Appl Geochem 22:1273–1292, 2007). In south-east Asia, As-rich groundwaters are often found in alluvial plains of regional rivers (Fendorf et al., Science 328:1123–1127, 2010). Prolonged consumption of groundwater with elevated levels of As may cause a formidable threat to human health and millions of people are now at risk (Bhattacharyya et al. Mol Cell Biochem 253:347–355, 2003a; Chatterjee et al., Water Res 44:5803–5812, 2010; Nath et al., Water Air Soil Pollut 190:95–113, 2008a). Arsenic contamination in groundwater and related health issues is considered as the greatest mass poisoning in human history (Smith et al., Bull World Health Organ 78:1093–1103, 2000).


Science of The Total Environment | 2018

Biogeochemical phosphorus cycling in groundwater ecosystems – Insights from South and Southeast Asian floodplain and delta aquifers

Harald Neidhardt; Daniel Schoeckle; Anna Schleinitz; Elisabeth Eiche; Zsolt Berner; Pham T.K. Tram; Vi Mai Lan; Pham Hung Viet; Ashis Biswas; Santanu Majumder; Debashis Chatterjee; Yvonne Oelmann; Michael Berg

The biogeochemical cycling of phosphorus (P) in South and Southeast Asian floodplain and delta aquifers has received insufficient attention in research studies, even though dissolved orthophosphate (PO43-) in this region is closely linked with the widespread contamination of groundwater with toxic arsenic (As). The overarching aim of this study was to characterize the enrichment of P in anoxic groundwater and to provide insight into the biogeochemical mechanisms underlying its mobilization, subsurface transport, and microbial cycling. Detailed groundwater analyses and in situ experiments were conducted that focused on three representative field sites located in the Red River Delta (RRD) of Vietnam and the Bengal Delta Plain (BDP) in West Bengal, India. The results showed that the total concentrations of dissolved P (TDP) ranged from 0.03 to 1.50 mg L-1 in groundwater, with PO43- being the dominant P species. The highest concentrations occurred in anoxic sandy Holocene aquifers where PO43- was released into groundwater through the microbial degradation of organic carbon and the concomitant reductive dissolution of Fe(III)-(hydr)oxides. The mobilization of PO43- may still constitute an active process within shallow Holocene sediments. Furthermore, a sudden supply of organic carbon may rapidly decrease the redox potential, which causes an increase in TDP concentrations in groundwater, as demonstrated by a field experiment. Considering the subsurface transport of PO43-, Pleistocene aquifer sediments represented effective sinks; however, the enduring contact between oxic Pleistocene sediments and anoxic groundwater also changed the sediments PO43--sorption capacity over time. A stable isotope analysis of PO43--bound oxygen indicated the influences of intracellular microbial cycling as well as a specific PO43- source with a distinct isotopically heavy signal. Consequently, porous aquifers in Asian floodplain and delta regions proved to be ideal natural laboratories to study the biogeochemical cycling of P and its behavior in groundwater environments.


International Journal of Environmental Analytical Chemistry | 2018

Optimisation of laboratory arsenic analysis for groundwaters of West Bengal, India and possible water testing strategy

Amit K. Kundu; Santanu Majumder; Ashis Biswas; S. Bhowmick; Chandranath Pal; Abhijit Mukherjee; Madhurina Majumder; Debashis Chatterjee

ABSTRACT Regular monitoring of arsenic (As) in groundwater is crucial from public health perspectives as millions of people are suffering due to use of contaminated aquifer water for drinking purposes. The routine analyses, especially in developing nations, are mostly done in localised government/non-government laboratories with limited resources, having the target of analysing large number of samples in each run. Thus apart from analytical sensitivity, cost-effectiveness of the method and eco-friendliness of the experimental operation are key surreptitious factors. This demands optimisation of total As measurement methods and finding a method that gives ‘optimum benefit’ considering all these factors together. The present study therefore evaluates four common As (total) measurement methods [iodometric-colorimetric method, silver diethyl dithiocarbamate method, molybdenum blue method and hydride generation atomic absorption spectrophotometric (HG-AAS) method] practised in the Bengal Delta Plain, in view of their analytical sensitivity, related environmental hazard and experimental costs. It was found that the HG-AAS method is analytically more sensitive, whereas the iodometric-colorimetric method and the molybdenum blue method are better choices in terms of eco-friendliness and cost-effectiveness, respectively. However, when all three factors (analytical reliability, environmental hazard and cost) are considered simultaneously, the molybdenum blue method was found to be placed first in the ‘optimum performance rank’ list. It was also found that both environmental hazard and cost play a more crucial role than analytical reliability, although this is case specific and would differ from place to place around the globe. Finally based on the results, we have hypothesised a water testing strategy for developing countries such as India where the molybdenum blue method can be adapted as a screening method and later the HG-AAS method can be used to precisely identify the groundwater samples with As concentration below the WHO drinking water guideline value of 10 μg/L.


Archive | 2010

Natural Arsenic in Coastal Groundwaters in the Bengal Delta Region in West Bengal, India

Prosun Bhattacharya; Gunnar Jacks; Bibhas Nath; Debashis Chatterjee; Ashis Biswas; Dipti Halder; Santanu Majumder; Subhamoy Bhowmick; A. L. Ramanathan

Bengal Delta region is currently confronted with largest groundwater arsenic calamity in history of human kind (BGS-DPHE, 2001; Mukherjee and Bhattacharya, 2001; Bhattacharya et al., 2002a; McArthur et al., 2001; Smedley and Kinniburgh, 2002; Mukherjee et al., 2006; Nath et al., 2005, 2007, 2008). Concentrations of arsenic in drinking water wells in the region often exceed the WHO drinking water guideline value (10 μg L−1) and the national safe limit of both India and Bangladesh for arsenic in drinking water (Smedley and Kinniburgh, 2002; RGNDWM, 2002; CGWB, 1999; Bhattacharya et al., 2002a). About one third (35 million) population inhabiting in this region (West Bengal and Bangladesh), currently at risk of long-term arsenic exposure (Bhattacharya et al., 2001; RGNDWM, 2002; Chakraborti et al., 2004; Kapaj et al., 2006), are being diagnosed with a wide spectrum of adverse health impacts including skin disorders such as hyper/hypo-pigmentation, keratosis and melanosis and are also in hot-spot areas of BDP which is reflected in a rise in the number of cancer cases (Guha Mazumdar et al., 1988). The distribution pattern of arsenic occurrence in BDP is patchy and there are numerous hotspots of arsenic contamination in the semi-confined shallow Holocene aquifer (Bhattacharya et al., 1997; Smedley and Kinniburgh, 2002). The scale of the problem is serious both in terms of hotspots and geographic area coverage (173 × 103 km2, eastern part of Hoogly-Bhagirathi/Western part of Ganga-Padma-lower Meghna flood plains).


Applied Geochemistry | 2011

Groundwater chemistry and redox processes : Depth dependent arsenic release mechanism

Ashis Biswas; Santanu Majumder; Harald Neidhardt; Dipti Halder; Subhamoy Bhowmick; Aishwarya Mukherjee-Goswami; Amit K. Kundu; Debasree Saha; Zsolt Berner; Debashis Chatterjee


Chemical Geology | 2014

Organic carbon induced mobilization of iron and manganese in a West Bengal aquifer and the muted response of groundwater arsenic concentrations

Harald Neidhardt; Zsolt Berner; Dominik Freikowski; Ashis Biswas; Santanu Majumder; Josef Winter; Claudia Gallert; Debashis Chatterjee; Stefan Norra


Science of The Total Environment | 2014

Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: The role of organic and inorganic colloids

Santanu Majumder; Bibhash Nath; Simita Sarkar; Debashis Chatterjee; Gabriela Roman-Ross; Manuela Hidalgo

Collaboration


Dive into the Santanu Majumder's collaboration.

Top Co-Authors

Avatar

Debashis Chatterjee

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Ashis Biswas

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Simita Sarkar

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zsolt Berner

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Harald Neidhardt

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dipti Halder

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Subhamoy Bhowmick

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Amit K. Kundu

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Debankur Chatterjee

Heritage Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge