Santasri Basu
Air Force Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Santasri Basu.
Journal of Applied Physics | 2015
Milo W. Hyde; Santasri Basu; David G. Voelz; Xifeng Xiao
A technique is presented to produce any desired partially coherent Schell-model source using a single phase-only liquid-crystal spatial light modulator (SLM). Existing methods use SLMs in combination with amplitude filters to manipulate the phase and amplitude of an initially coherent source. The technique presented here controls both the phase and amplitude using a single SLM, thereby making the amplitude filters unnecessary. This simplifies the optical setup and significantly increases the utility and flexibility of the resulting system. The analytical development of the technique is presented and discussed. To validate the proposed approach, experimental results of three partially coherent Schell-model sources are presented and analyzed. A brief discussion of possible applications is provided in closing.
Journal of Optics | 2015
Milo W. Hyde; Santasri Basu; Xifeng Xiao; David G. Voelz
A new technique is presented to produce any desired mean far-field irradiance pattern using a partially-coherent Schell-model source. The new method differs from similar approaches in the literature by requiring only phase control. This permits the proposed approach to be easily implemented in the laboratory using a single spatial light modulator. The analytical development of the phase-only method is presented and discussed. Simulation and experimental results are presented to validate the proposed method. Applications for the new technique include free-space optical communications, material processing/manufacture, and particle trapping.
Optical Engineering | 2012
Noah R. Van Zandt; Salvatore J. Cusumano; Richard J. Bartell; Santasri Basu; Jack E. McCrae; Steven T. Fiorino
Abstract. The performance of a multibeam laser system is evaluated for coherent and incoherent beam combination under tactical scenarios. For direct comparison, identical aperture geometries are used for both, coherent or incoherent, combination methods. The analysis assumes a multilaser source coupled with a conventional 0.32 m diameter, on-axis, beam director. Parametric analysis includes variations over residual errors, beam quality, atmospheric effects, and scenario geometry. Analytical solutions from previous results are used to evaluate performance for the vacuum case, providing an upper bound on performance and a backdrop for organizing the multitude of effects as they are analyzed. Wave optics simulations are used for total system performance. Each laser in the array has a wavelength of 1.07 μm, 10 kW (25 kW) output power, and Gaussian exitance profile. Both tracking and full-aperture adaptive optics are modeled. Three tactical engagement geometries, air to surface, surface to air, and surface to surface, are evaluated for slant ranges from 2.5 to 10 km. Two near-median atmospheric profiles were selected based upon worldwide climatological data. The performance metric used is beam propagation efficiency for circular target diameters of 5 and 10 cm.
Optics Express | 2014
Santasri Basu; Milo W. Hyde; Xifeng Xiao; David G. Voelz; Olga Korotkova
Two different methodologies for generating an electromagnetic Gaussian-Schell model source are discussed. One approach uses a sequence of random phase screens at the source plane and the other uses a sequence of random complex transmittance screens. The relationships between the screen parameters and the desired electromagnetic Gaussian-Schell model source parameters are derived. The approaches are verified by comparing numerical simulation results with published theory. This work enables one to design an electromagnetic Gaussian-Schell model source with pre-defined characteristics for wave optics simulations or laboratory experiments.
Applied Optics | 2006
Deva K. Borah; David G. Voelz; Santasri Basu
A maximum-likelihood estimator used to determine boresight and jitter performance of a laser pointing system has been derived. The estimator is based on a Gaussian jitter model and uses a Gaussian far-field irradiance profile. The estimates are obtained using a set of return shots from the intended target. An experimental setup with a He-Ne laser and steering mirrors is used to study the performance of the proposed method. Both Monte Carlo simulations and experimental results demonstrate excellent performance of the estimator. Our study shows that boresight estimation is more challenging than jitter estimation when both quantities are estimated. Furthermore, their estimation performance improves with an increase in the number of shots. The experimental results are found to agree well with the simulation results.
Optics Express | 2013
Milo W. Hyde; Santasri Basu; Mark F. Spencer; Salvatore J. Cusumano; Steven T. Fiorino
The scattering of a partially-coherent wave from a statistically rough material surface is investigated via derivation of the scattered field cross-spectral density function. Two forms of the cross-spectral density are derived using the physical optics approximation. The first is applicable to smooth-to-moderately rough surfaces and is a complicated expression of source and surface parameters. Physical insight is gleaned from its analytical form and presented in this work. The second form of the cross-spectral density function is applicable to very rough surfaces and is remarkably physical. Its form is discussed at length and closed-form expressions are derived for the angular spectral degree of coherence and spectral density radii. Furthermore, it is found that, under certain circumstances, the cross-spectral density function maintains a Gaussian Schell-model form. This is consistent with published results applicable only in the paraxial regime. Lastly, the closed-form cross-spectral density functions derived here are rigorously validated with scatterometer measurements and full-wave electromagnetic and physical optics simulations. Good agreement is noted between the analytical predictions and the measured and simulated results.
Optical Engineering | 2013
Santasri Basu; Milo W. Hyde; Salvatore J. Cusumano; Michael A. Marciniak; Steven T. Fiorino
Abstract. Military applications that use adaptive optics (AO) often require a point source beacon at the target to measure and correct for wavefront aberrations introduced by atmospheric turbulence. However, turbulence prevents the formation of such a point beacon. The extended beacons that are created instead have finite spatial extents and exhibit varying degrees of spatial coherence. Modeling these extended beacons using a Gaussian Schell-model (GSM) form for the autocorrelation function would be a convenient approach due to the analytical tractability of Gaussian functions. We examine the validity of using such a model by evaluating the field scattered from a rough impedance surface using a full-wave computational technique called the method of moments (MoM). The MoM improves the fidelity of the analysis since it captures all the physics of the laser-target interaction, such as masking, shadowing, multiple reflections, etc. Two rough-surface targets with different roughness statistics are analyzed. The simulation results are verified with experimental bidirectional reflectance distribution function measurements. It is seen that for rough surfaces, in general, the scattered-field autocorrelation function is not of a GSM form. However, under certain conditions, modeling an extended beacon as a GSM source is legitimate. This analysis will aid in understanding the behavior of extended beacons and how they affect the overall performance of an AO system.
Optical Systems Design 2012 | 2012
Milo W. Hyde; Santasri Basu; Salvatore J. Cusumano; Mark F. Spencer
The scattering of a spatially partially coherent wave from a one-dimensional statistically rough metallic surface is investigated. Assuming a Gaussian Schell-model form for the incident field autocorrelation function, a closed-form expression for the scattered field autocorrelation function is derived using the physical optics approximation (Kirchhoff approximation). Two forms of the solution are derived—one applicable to very rough surfaces and the other applicable to moderately rough surfaces. It is shown that for very rough surfaces, the solution, under certain circumstances, remains Gaussian Schell model as has been previously reported. As such, closed-form expressions for the angular coherence radius and angular scattering radius are derived. These expressions are, in general, complicated functions of both the source (size and coherence properties) and surface parameters (surface height standard deviation and correlation length). It is demonstrated that for many scenarios of interest, the angular coherence radius can be safely approximated as a function of just the source parameters and the angular scattering radius can be simplified to a function of just the surface parameters. For the moderately rough surface solution, the scattered field autocorrelation function is, in general, not Gaussian Schell model and it is therefore not possible to derive analytical forms for the angular coherence radius or angular scattering radius. Nonetheless, the form of the autocorrelation function is physically intuitive and is discussed in this work. To verify the presented theoretical analysis, wave optics simulation results are presented and compared to the predictions of the analytical models. This analysis is concluded with a discussion of future work.
Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation | 2004
Susan M. Chandler; Gordon W. Lukesh; David G. Voelz; Santasri Basu; Jon Sjogren
On September 1, 2003, Nukove Scientific Consulting, together with partner New Mexico State University (NMSU), began work on a Phase I Small Business Technology TRansfer (STTR) grant from the Air Force Office of Scientific Research (AFOSR). The purpose of the grant was to show the feasibility of taking Nukoves pointing estimation technique from a post-processing tool for estimation of laser system characteristics to a real-time tool usable in the field. Nukoves techniques for pointing, shape, and OCS estimation do not require an imaging sensor nor a target board, thus estimates may be made very quickly. To prove feasibility, Nukove developed an analysis tool RHINO (Real-time Histogram Interpretation of Numerical Observations) and successfully demonstrated the emulation of real-time, frame-by-frame estimation of laser system charcteristics, with data streamed into the tool and the estimates displayed as they are made. The eventual objective will be to use the frame-by-frame estimates to allow for feedback to a fielded system. Closely associated with this, NMSU has developed a laboratory testbed to illuminate test objects, collect the received photons, and stream the data into RHINO. The two coupled efforts clearly demonstrate the feasibility of real-time pointing control of a laser system.
Optical Engineering | 2015
Milo W. Hyde; Santasri Basu; David G. Voelz; Xifeng Xiao
A significant improvement to the recently intro- duced complex screen (CS) method for generating parti- ally coherent Schell-model sources is presented. The method, called the modified phase screen (MPS) tech- nique, applies a deterministic amplitude and the phase portion of a CS to an initially coherent light source using a single phase-only spatial light modulator. The MPS tech- nique, unlike the CS approach from which it is derived, does not produce a fully developed speckle pattern in the source plane, and therefore converges faster and more uniformly to the desired partially coherent source. The analytical development of the MPS method is pre- sented. Experimental results of a Bessel-Gaussian-corre- lated Schell-model source, generated using the CS and MPS approaches, are compared to demonstrate the valid- ity and utility of the MPS technique.