Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Santhosh Puthiyakunnon is active.

Publication


Featured researches published by Santhosh Puthiyakunnon.


PLOS Neglected Tropical Diseases | 2014

Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship

Yiji Li; Fatmata Kamara; Guofa Zhou; Santhosh Puthiyakunnon; Chunyuan Li; Yanxia Liu; Yanhe Zhou; Lijie Yao; Guiyun Yan; Xiao-Guang Chen

Introduction Aedes albopictus is a very invasive and aggressive insect vector that causes outbreaks of dengue fever, chikungunya disease, and yellow fever in many countries. Vector ecology and disease epidemiology are strongly affected by environmental changes. Urbanization is a worldwide trend and is one of the most ecologically modifying phenomena. The purpose of this study is to determine how environmental changes due to urbanization affect the ecology of Aedes albopictus. Methods Aquatic habitats and Aedes albopictus larval population surveys were conducted from May to November 2013 in three areas representing rural, suburban, and urban settings in Guangzhou, China. Ae. albopictus adults were collected monthly using BG-Sentinel traps. Ae. albopictus larva and adult life-table experiments were conducted with 20 replicates in each of the three study areas. Results The urban area had the highest and the rural area had the lowest number of aquatic habitats that tested positive for Ae. albopictus larvae. Densities in the larval stages varied among the areas, but the urban area had almost two-fold higher densities in pupae and three-fold higher in adult populations compared with the suburban and rural areas. Larvae developed faster and the adult emergence rate was higher in the urban area than in suburban and rural areas. The survival time of adult mosquitoes was also longer in the urban area than it was in suburban and rural areas. Study regions, surface area, water depth, water clearance, surface type, and canopy coverage were important factors associated with the presence of Ae. albopictus larvae. Conclusions Urbanization substantially increased the density, larval development rate, and adult survival time of Ae. albopictus, which in turn potentially increased the vector capacity, and therefore, disease transmissibility. Mosquito ecology and its correlation with dengue virus transmission should be compared in different environmental settings.


PLOS Neglected Tropical Diseases | 2014

Strongyloidiasis—An Insight into Its Global Prevalence and Management

Santhosh Puthiyakunnon; Swapna Boddu; Yiji Li; Xiaohong Zhou; Chunmei Wang; Juan Li; Xiao-Guang Chen

Background Strongyloides stercoralis, an intestinal parasitic nematode, infects more than 100 million people worldwide. Strongyloides are unique in their ability to exist as a free-living and autoinfective cycle. Strongyloidiasis can occur without any symptoms or as a potentially fatal hyperinfection or disseminated infection. The most common risk factors for these complications are immunosuppression caused by corticosteroids and infection with human T-lymphotropic virus or human immunodeficiency virus. Even though the diagnosis of strongyloidiasis is improved by advanced instrumentation techniques in isolated and complicated cases of hyperinfection or dissemination, efficient guidelines for screening the population in epidemiological surveys are lacking. Methodology and Results In this review, we have discussed various conventional methods for the diagnosis and management of this disease, with an emphasis on recently developed molecular and serological methods that could be implemented to establish guidelines for precise diagnosis of infection in patients and screening in epidemiological surveys. A comprehensive analysis of various cases reported worldwide from different endemic and nonendemic foci of the disease for the last 40 years was evaluated in an effort to delineate the global prevalence of this disease. We also updated the current knowledge of the various clinical spectrum of this parasitic disease, with an emphasis on newer molecular diagnostic methods, treatment, and management of cases in immunosuppressed patients. Conclusion Strongyloidiasis is considered a neglected tropical disease and is probably an underdiagnosed parasitic disease due to its low parasitic load and uncertain clinical symptoms. Increased infectivity rates in many developed countries and nonendemic regions nearing those in the most prevalent endemic regions of this parasite and the increasing transmission potential to immigrants, travelers, and immunosuppressed populations are indications for initiating an integrated approach towards prompt diagnosis and control of this parasitic disease.


Cell & Bioscience | 2015

The expression profile of Aedes albopictus miRNAs is altered by dengue virus serotype-2 infection.

Yanxia Liu; Yanhe Zhou; Jinya Wu; Peiming Zheng; Yiji Li; Xiaoying Zheng; Santhosh Puthiyakunnon; Zhijian Tu; Xiao-Guang Chen

BackgroundAedes albopictus is an important vector of Dengue virus (DENV) and it has quickly invaded the tropical and temperate environments worldwide. A few studies have shown that, microRNAs (miRNAs) regulate mosquito defense against pathogens. However, there is no systematic analysis of the impact of DENV infection on miRNA expression in Ae. albopictus. We conducted this study to investigate the miRNA expression of Ae. albopictus upon DENV-2 infection using Illumina RNA sequencing.ResultsA total of 103 known and 5 novel candidate miRNAs were identified in DENV-2 infected and non-infected adult female Ae. albopictus. Comparative analysis indicated that 52 miRNAs were significantly down-regulated and 18 were up-regulated significantly after infection. Furthermore, RT-qPCR validated the expression patterns of eleven of these differentially expressed miRNAs. Targets prediction and functional analysis of these regulated miRNAs suggested that miR-34-5p and miR-87 might be involved in the anti-pathogen and immune responses.ConclusionThis is the first systematic study on the impact of DENV infection on miRNA expression in Ae. albopictus. Complex changes in miRNA expression suggest a potential role of miRNAs in antiviral responses by regulating immune-related genes. This investigation provides information concerning DENV-induced miRNAs and offers clues for identifying potential candidates for vector based antiviral strategies.


Journal of Medical Virology | 2014

miR‐252 of the Asian tiger mosquito Aedes albopictus regulates dengue virus replication by suppressing the expression of the dengue virus envelope protein

Hui Yan; Yanhe Zhou; Yanxia Liu; Yuhua Deng; Santhosh Puthiyakunnon; Xiao-Guang Chen

The Asian tiger mosquito, Aedes albopictus is a major vector of dengue in mainland China. Dengue epidemics have spread from the southern coastal regions to the relatively northern and western regions since 1990s. Dengue has become an emerging public health problem in the southern coastal regions. microRNAs (miRNAs) are short non‐coding RNAs that regulate gene expression at the post‐transcriptional level. A highly abundant miRNA, miR‐252, was induced more than threefold after dengue virus serotype 2 (DENV‐2) infection in the Ae. albopictus C6/36 cell line. Transfection with miR‐252 inhibitor resulted in the increase of DENV‐2 RNA copies and the up‐regulation of DENV‐2 envelop protein (E protein) expression, whereas over expression of miR‐252 with its mimic decreased DENV RNA copies and the down‐regulation of E protein expression. MiR‐252 mimic reduced luciferase activity of a luciferase reporter that contained the predicted miR‐252 target on the DENV‐2 envelope gene sequence. The present results indicated that the miR‐252 of Ae. albopictus could regulate the gene expression of DENV‐2 E protein and may act as a cellular antiviral regulator in Ae. albopictus. J. Med. Virol. 86:1428–1436, 2014.


Parasites & Vectors | 2013

Functional characterization of three MicroRNAs of the Asian Tiger Mosquito, Aedes albopictus

Santhosh Puthiyakunnon; Yunying Yao; Yiji Li; Jinbao Gu; Hong-Juan Peng; Xiao-Guang Chen

BackgroundTemporal and stage specific expression of microRNAs (miRNAs) in embryos, larvae, pupae and adults of Aedes albopictus showed differential expression levels across the four developmental stages, indicating their potential regulatory roles in mosquito development. The functional characterization of these miRNAs was not known. Accordingly our study evaluated the functional characterization of three miRNAs, which are temporally up-regulated in the various developmental stages of Ae. albopictus mosquitoes.MethodsmiRNA mimics, inhibitors and negative controls were designed and their knock-in and knock-down efficiency were analyzed by qRT-PCR after transfecting the mosquito cell lines C6/36, and also by injecting in their specific developmental stages. The functional role of each individual miRNA was analyzed with various parameters of development such as, hatching rate and hatching time in embryos, eclosion rate in larvae, longevity and fecundity in the adult mosquitoes.ResultsThe knock-in with the specifically designed miRNA mimics showed increased levels of expression of miRNA compared with their normal controls. We confirmed these findings using qRT-PCR, both by in vitro expression in C6/36 mosquito cell lines after transfection as well as in in vivo expression in developmental stages of mosquitoes by microinjection. The knock-down of expression with the corresponding inhibitors showed a considerable decrease in the expression levels of these miRNAs and obvious functional effects in Ae. albopictus development, detected by a decrease in the hatching rate of embryos and eclosion rate in larvae and a marked reduction in longevity and fecundity in adults.ConclusionThis study carried out by knock-in and knock-down of specifically and temporally expressed miRNAs in Ae. albopictus by microinjection is a novel study to delineate the importance of the miRNA expression in regulating mosquito development. The knock-down and loss of function of endogenously expressed miRNAs by the miRNA inhibitors in specific developmental stages had considerable effects on development, but enhancement of their gain of function was not observed on knock-in of these specific miRNAs. Hence, our study indicates that an optimal level of endogenous expression of miRNA is indispensable for the normal development and maintenance of the vectorial population density and pathogen transmissibility of this mosquito vector.


Journal of Biomedical Science | 2016

CD44-mediated monocyte transmigration across Cryptococcus neoformans-infected brain microvascular endothelial cells is enhanced by HIV-1 gp41-I90 ectodomain

Xiaolong He; Xiaolu Shi; Santhosh Puthiyakunnon; Like Zhang; Qing Zeng; Yan Li; Swapna Boddu; Jiawen Qiu; Zhihao Lai; Chao Ma; Yulong Xie; Min Long; Lei Du; Sheng-He Huang; Hong Cao

BackgroundCryptococcus neoformans (Cn) is an important opportunistic pathogen in the immunocompromised people, including AIDS patients, which leads to fatal cryptococcal meningitis with high mortality rate. Previous researches have shown that HIV-1 gp41-I90 ectodomain can enhance Cn adhesion to and invasion of brain microvascular endothelial cell (BMEC), which constitutes the blood brain barrier (BBB). However, little is known about the role of HIV-1 gp41-I90 in the monocyte transmigration across Cn-infected BBB. In the present study, we provide evidence that HIV-1 gp41-I90 and Cn synergistically enhance monocytes transmigration across the BBB in vitro and in vivo. The underlying mechanisms for this phenomenon require further study.MethodsIn this study, the enhancing role of HIV-1 gp41-I90 in monocyte transmigration across Cn-infected BBB was demonstrated by performed transmigration assays in vitro and in vivo.ResultsOur results showed that the transmigration rate of monocytes are positively associated with Cn and/or HIV-1 gp41-I90, the co-exposure (HIV-1 gp41-I90 + Cn) group showed a higher THP-1 transmigration rate (P < 0.01). Using CD44 knock-down HBMEC or CD44 inhibitor Bikunin in the assay, the facilitation of transmigration rates of monocyte enhanced by HIV-1 gp41-I90 was significantly suppressed. Western blotting analysis and biotin/avidin enzyme-linked immunosorbent assays (BA-ELISAs) showed that Cn and HIV-1 gp41-I90 could increase the expression of CD44 and ICAM-1 on the HBMEC. Moreover, Cn and/or HIV-1 gp41-I90 could also induce CD44 redistribution to the membrane lipid rafts. By establishing the mouse cryptococcal meningitis model, we found that HIV-1 gp41-I90 and Cn could synergistically enhance the monocytes transmigration, increase the BBB permeability and injury in vivo.ConclusionsCollectively, our findings suggested that HIV-1 gp41-I90 ectodomain can enhance the transmigration of THP-1 through Cn-infected BBB, which may be mediated by CD44. This novel study enlightens the future prospects to elaborate the inflammatory responses induced by HIV-1 gp41-I90 ectodomain and to effectively eliminate the opportunistic infections in AIDS patients.


Parasites & Vectors | 2016

Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes

Yiji Li; Xinghua Su; Guofa Zhou; Hong Zhang; Santhosh Puthiyakunnon; Shufen Shuai; Songwu Cai; Jinbao Gu; Xiaohong Zhou; Guiyun Yan; Xiao-Guang Chen

BackgroundThe surveillance of vector mosquitoes is important for the control of mosquito-borne diseases. To identify a suitable surveillance tool for the adult dengue vector Aedes albopictus, the efficacy of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap (MOT) on the capture of vector mosquitoes were comparatively evaluated in this study.MethodsThe capture efficiencies of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for common vector mosquitoes were tested in a laboratory setting, through the release-recapture method, and at two field sites of Guangzhou, China from June 2013 to May 2014. The captured mosquitoes were counted, species identified and compared among the three traps on the basis of species.ResultsIn the release-recapture experiments in a laboratory setting, the BG-Sentinel trap caught significantly more Aedes albopictus and Culex quinquefasciatus than the CDC light trap and Mosquito-ovitrap, except for Anopheles sinensis. The BG-Sentinel trap had a higher efficacy in capturing female rather than male Ae. albopictus and Cx. quinquefasciatus, but the capture in CDC light traps displayed no significant differences. In the field trial, BG-Sentinel traps collected more Aedes albopictus than CDC light traps and MOTs collected in both urban and suburban areas. The BG-Sentinel trap was more sensitive for monitoring the population density of Aedes albopictus than the CDC light trap and MOT during the peak months of the year 2013. However, on an average, CDC light traps captured significantly more Cx. quinquefasciatus than BG-Sentinel traps. The population dynamics of Cx. quinquefasciatus displayed a significant seasonal variation, with the lowest numbers in the middle of the year.ConclusionsThis study indicates that the BG-Sentinel trap is more effective than the commonly used CDC light trap and MOT in sampling adult Aedes albopictus and Culex quinquefasciatus. We recommend its use in the surveillance of dengue vector mosquitoes in China.


Fems Immunology and Medical Microbiology | 2015

Role of uropathogenic Escherichia coli outer membrane protein T in pathogenesis of urinary tract infection

Xiao Long He; Qin Wang; Liang Peng; Ya-Rong Qu; Santhosh Puthiyakunnon; Xiao-Lu Liu; Chang Ye Hui; Swapna Boddu; Hong Cao; Sheng-He Huang

OmpT is one of the members of the outer membrane protein family that has been identified as a virulence factor in most of the uropathogenic Escherichia coli (UPEC). However, the exact role of OmpT in the urinary tract infections (UTIs) remains unclear. To determine the role of OmpT in the pathogenesis of UPEC, an isogenic deletion mutant of ompT (COTD) was constructed by the λ Red recombination. Human bladder epithelial cell line 5637(HBEC 5637) was used to evaluate the ability of bacterial adhesion/invasion. A murine model of UTI was established to study the formation of intracellular bacterial communities (IBCs) in the process of UTIs. The cytokines were also examined during the pathogenesis. The results showed that the COTD strain was deficient in bacterial adhesion and invasion as well as in IBC formation compare to the parent strain. ELISA quantification analysis of cytokines showed that the levels of TNF-α, IL-6 and IL-8 in the serum, bladder and kidney tissues of the mice infected with COTD were lower than that of the CFT073 group. In summary, these results suggest that OmpT plays a multifaceted role in pathogenesis of UTI, including increased bacterial adhesiveness/invasiveness, formation of IBCs and upregulated proinflammatory cytokines.


Scientific Reports | 2017

Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense

Xiaolong He; Qing Zeng; Santhosh Puthiyakunnon; Zhijie Zeng; Weijun Yang; Jiawen Qiu; Lei Du; Swapna Boddu; Tongwei Wu; Danxian Cai; Sheng-He Huang; Hong Cao

The objective of this study was to determine whether Lactobacillus rhamnosus GG culture supernatant (LCS) has a preventive effect against gut-derived systemic neonatal Escherichia coli (E. coli) K1 infection. The preventive effects were evaluated in human colonic carcinoma cell line Caco-2 and neonatal rat models. Our in vitro results showed that LCS could block adhesion, invasion and translocation of E. coli K1 to Caco-2 monolayer via up-regulating mucin production and maintaining intestinal integrity. In vivo experiments revealed that pre-treatment with LCS significantly decrease susceptibility of neonatal rats to oral E. coli K1 infection as reflected by reduced bacterial intestinal colonization, translocation, dissemination and systemic infections. Further, we found that LCS treated neonatal rats have higher intestinal expressions of Ki67, MUC2, ZO-1, IgA, mucin and lower barrier permeability than those in untreated rats. These results indicated that LCS could enhance neonatal resistance to systemic E. coli K1 infection via promoting maturation of neonatal intestinal defense. In conclusions, our findings suggested that LCS has a prophylactic effect against systemic E. coli K1 infection in neonates. Future studies aimed at identifying the specific active ingredients in LCS will be helpful in developing effective pharmacological strategies for preventing neonatal E. coli K1 infection.


Frontiers in Microbiology | 2017

Probiotic Mixture Golden Bifido Prevents Neonatal Escherichia coli K1 Translocation via Enhancing Intestinal Defense

Qing Zeng; Xiaolong He; Santhosh Puthiyakunnon; Hansen Xiao; Zelong Gong; Swapna Boddu; Lecheng Chen; Huiwen Tian; Sheng-He Huang; Hong Cao

Escherichia coli (E. coli) K1 sepsis and meningitis is a severe infection characterized by high mortality in neonates. Successful colonization and translocation across the intestinal mucosa have been regarded as the critical steps for E. coli K1 sepsis and meningitis. We recently reported that the probiotic mixture, Golden Bifido (containing live Lactobacillus bulgaricus, Bifidobacterium, and Streptococcus thermophilus, LBS) has a preventive role against neonatal E. coli K1 bacteremia and meningitis. However, the interaction between the neonatal gut barrier, probiotics and E. coli K1 is still not elucidated. The present study aims to investigate how LBS exerts its protective effects on neonatal gut barrier during E. coli K1 infection. The beneficial effects of LBS were explored in vitro and in vivo using human colon carcinoma cell lines HT-29 and rat model of neonatal E. coli K1 infection, respectively. Our results showed that stimulation with E. coli K1 was able to cause intestinal barrier dysfunction, which were reflected by E. coli K1-induced intestinal damage and apoptosis of intestinal epithelial cells, reduction of mucin, immunoglobulin A (IgA) and tight junction proteins expression, as well as increase in intestinal permeability, all these changes facilitate E. coli K1 intestinal translocation. However, these changes were alleviated when HT-29 cells were treated with LBS before E. coli K1 infection. Furthermore, we found that LBS-treated neonatal rats (without E. coli K1 infection) have showed higher production of mucin, ZO-1, IgA, Ki67 in intestinal mucosa as well as lower intestinal permeability than that of non-treated rats, indicating that LBS could accelerate the development of neonatal intestinal defense. Taken together, our results suggest that enhancement of the neonatal intestinal defense to fight against E. coli K1 translocation could be the potential mechanism to elucidate how LBS confers a protective effect against neonatal E. coli K1 bacteremia and meningitis. This indirect mechanism makes LBS exert preventive effect on most of gut-derived pathogenic infections rather than only E. coli.

Collaboration


Dive into the Santhosh Puthiyakunnon's collaboration.

Top Co-Authors

Avatar

Swapna Boddu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Guang Chen

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Hong Cao

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Yiji Li

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Sheng-He Huang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Xiaolong He

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Yanhe Zhou

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Yanxia Liu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Jinbao Gu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Qing Zeng

Southern Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge