Santi Cassisi
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Santi Cassisi.
The Astrophysical Journal | 2004
A. Pietrinferni; Santi Cassisi; Maurizio Salaris; F. Castelli
We present a large and updated stellar evolution database for low-, intermediate-, and high-mass stars in a wide metallicity range, suitable for studying Galactic and extragalactic simple and composite stellar populations using population synthesis techniques. The stellar mass range is between � 0.5 and 10 Mwith a fine mass spacing. The metallicity (Fe/H) comprises 10 values ranging from � 2.27 to 0.40, with a scaled solar metal distribution. The initial He mass fraction ranges from Y ¼ 0:245, for the more metal-poor composition, up to 0.303 for the more metal-rich one, with Y =Z � 1:4. For each adopted chemical composition, the evolutionary models have been computed without (canonical models) and with overshooting from the Schwarzschild boundary of the convective cores during the central H-burning phase. Semiconvection is included in the treatment of core convection during the He-burning phase. The whole set of evolutionary models can be used to compute isochrones in a wide age range, from � 30 Myr to � 15 Gyr. Both evolutionary models and isochrones are available in several observational planes, employing an updated set of bolometric corrections and color-TeA relations computed for this project. The number of points along the models and the resulting isochrones is selected in such a way that interpolation for intermediate metallicities not contained in the grid is straightforward; a simple quadratic interpolation produces results of sufficient accuracy for population synthesis applications.We compare our isochrones with results from a series of widely used stellar evolution databases and perform some empirical tests for the reliability of our models. Since this work is devoted to scaled solar chemical compositions, we focus our attention on the Galactic disk stellar populations, employing multicolor photometry of unevolved field main-sequence stars with precise Hipparcos parallaxes, well-studied open clusters, and one eclipsing binary system with precise measurements of masses, radii, and (Fe/H) of both components. We find that the predicted metallicity dependence of the location of the lower, unevolved main sequence in the color magnitude diagram (CMD) appears in satisfactory agreement with empirical data. When comparing our models with CMDs of selected, well-studied, open clusters, once again we were able to properly match the whole observed evolutionary sequences by assuming cluster distance and reddening estimates in satisfactory agreement with empirical evaluations of these quantities. In general, models including overshooting during the H-burning phase provide a better match to the observations, at least for ages below � 4 Gyr. At (Fe/H) around solar and higher ages (i.e., smaller convective cores) before the onset of radiative cores, the selected efficiency of core overshooting may be too high in our model, as well as in various other models in the literature. Since we also provide canonical models, the reader is strongly encouraged to always compare the results from both sets in this critical age range. Subject heading gs: galaxies: stellar content — Galaxy: disk — open clusters and associations: general — stars: evolution — stars: horizontal-branch
The Astrophysical Journal | 2006
Adriano Pietrinferni; Santi Cassisi; Maurizio Salaris; F. Castelli
We present a large, new set of stellar evolution models and isochrones for an α-enhanced metal distribution typical of Galactic halo and bulge stars; it represents a homogeneous extension of our stellar model library for a scaled-solar metal distribution already presented by Pietrinferni et al. The effect of the α-element enhancement has been properly taken into account in the nuclear network, opacity, equation of state, and for the first time in the bolometric corrections and color transformations. This allows us to avoid the inconsistent use—common to all α-enhanced model libraries currently available—of scaled-solar bolometric corrections and color transformations for α-enhanced models and isochrones. We show how bolometric corrections to magnitudes obtained for the U, B portion of stellar spectra for Teff ≤ 6500 K are significantly affected by the metal mixture, especially at the higher metallicities. Our models cover both an extended mass range (between 0.5 and 10 M☉, with a fine mass spacing) and a broad metallicity range, including 11 values of the metal mass fraction Z, corresponding to the range -2.6 ≤ [Fe/H] ≤ 0.05. The initial He mass fraction is Y = 0.245 for the most metal-poor models, and it increases with Z, according to ΔY/ΔZ = 1.4. Models with and without the inclusion of overshoot from the convective cores during the central H-burning phase are provided, as well as models with different mass loss efficiencies. We also provide complete sets of evolutionary models for low-mass, He-burning stellar structures cover the whole metallicity range. This database, used in combination with our scaled-solar model library, is a valuable tool for investigating both Galactic and extragalactic simple and composite stellar populations, using stellar population synthesis techniques.
The Astrophysical Journal | 2005
Giampaolo Piotto; Sandro Villanova; L. R. Bedin; R. Gratton; Santi Cassisi; Yazan Momany; Alejandra Recio-Blanco; Sara Lucatello; Jay Anderson; Ivan R. King; A. Pietrinferni; Giovanni Carraro
Having shown in a recent paper that the main sequence of ? Centauri is split into two distinct branches, we now present spectroscopic results showing that the bluer sequence is less metal-poor. We have carefully combined VLTs GIRAFFE spectra of 17 stars on each side of the split into a single spectrum for each branch, with adequate signal-to-noise ratio, to show clearly that the stars of the blue main sequence are less metal-poor by 0.3 dex than those of the dominant red one. From an analysis of the individual spectra, we could not detect any abundance spread among the blue main-sequence stars, whereas the red main-sequence stars show a 0.2 dex spread in metallicity. We use stellar structure models to show that only greatly enhanced helium can explain the color difference between the two main sequences, and we discuss ways in which this enhancement could have arisen.
The Astrophysical Journal | 2004
L. R. Bedin; Giampaolo Piotto; Jay Anderson; Santi Cassisi; Ivan R. King; Yazan Momany; Giovanni Carraro
We present Hubble Space Telescope observations that show a bifurcation of colors in the middle main sequence of the globular cluster ω Centauri. We see this in three different fields, observed with different cameras and filters. We also present high-precision photometry of a central Advanced Camera for Surveys field, which shows a number of main-sequence turnoffs and subgiant branches. The double main sequence, the multiple turnoffs and subgiant branches, and other population sequences discovered in the past along the red giant branch of this cluster add up to a fascinating but frustrating puzzle. We suggest various explanations, none of them very conclusive.
Astronomy and Astrophysics | 2010
Eugenio Carretta; A. Bragaglia; R. Gratton; A. Recio-Blanco; Sara Lucatello; V. D'Orazi; Santi Cassisi
We revise the scenario of the formation of Galactic globular clusters (GCs) by adding the observed detailed chemical composition of their different stellar generations to the set of their global parameters. We exploit the unprecedented set of homogeneous abundances of more than 1200 red giants in 19 clusters, as well as additional data from literature, to give a new definition of bona fide GCs, as the stellar aggregates showing the Na-O anticorrelation. We propose a classification of GCs according to their kinematics and location in the Galaxy in three populations: disk/bulge, inner halo, and outer halo. We find that the luminosity function of GCs is fairly independent of their population, suggesting that it is imprinted by the formation mechanism only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs. The extremely low Al abundances found for the primordial population of massive GCs indicate a very fast enrichment process before the formation of the primordial population. We suggest a scenario for the formation of GCs that includes at least three main phases: i) the formation of a precursor population (likely due to the interaction of cosmological structures similar to those that led to the formation of dwarf spheroidals, but residing at smaller Galactocentric distances, with the early Galaxy or with other structures); ii) the triggering of a long episode of star formation (the primordial population) from the precursor population; and iii) the formation of the current GC, mainly within a cooling flow formed by the slow winds of a fraction of the primordial population. The precursor population is very effective in raising the metal content in massive and/or metal-poor (mainly halo) clusters, while its role is minor in small and/or metal-rich (mainly disk) ones. Finally, we use principal component analysis and multivariate relations to study the phase of metal enrichment from first to second generation. We conclude that most of the chemical signatures of GCs may be ascribed to a few parameters, the most important being metallicity, mass, and cluster age. Location within the Galaxy (as described by the kinematics) also plays some role, while additional parameters are required to describe their dynamical status.
Astronomy and Astrophysics | 2003
M. Zoccali; Alvio Renzini; Sergio Ortolani; Laura Greggio; Ivo Saviane; Santi Cassisi; M. Rejkuba; Beatriz Barbuy; Robert Michael Rich; Eduardo Luiz Damiani Bica
We present a new determination of the metallicity distribution, age, and luminosity function of the Galactic bulge stellar population. By combining near-IR data from the 2MASS survey, from the SOFI imager at ESO NTT and the NICMOS camera on board HST we were able to construct color-magnitude diagrams (CMD) and luminosity functions (LF) with large statistics and small photometric errors from the Asymptotic Giant Branch (AGB) and Red Giant Branch (RGB) tip down to ∼0.15 M� . This is the most extended and complete LF so far obtained for the galactic bulge. Similar near-IR data for a disk control field were used to decontaminate the bulge CMDs from foreground disk stars, and hence to set a stronger constraint on the bulge age, which we found to be as large as that of Galactic globular clusters, or >10 Gyr. No trace is found for any younger stellar population. Synthetic CMDs have been constructed to simulate the effect of photometric errors, blending, differential reddening, metallicity dispersion and depth effect in the comparison with the observational data. By combining the near-IR data with optical ones, from the Wide Field Imager at the ESO/MPG 2.2 m telescope, a disk-decontaminated (MK,V-K )C MD has been constructed and used to derive the bulge metallicity distribution, by comparison with empirical RGB templates. The bulge metallicity is found to peak at near solar value, with a sharp cutoff just above solar, and a tail towards lower metallicity that does not appreciably extend below (M/H) ∼− 1.5.
The Astrophysical Journal | 2012
A. P. Milone; Giampaolo Piotto; L. R. Bedin; Ivan R. King; J. Anderson; A. F. Marino; A. Bellini; R. Gratton; A. Renzini; Peter B. Stetson; Santi Cassisi; Antonio Aparicio; A. Bragaglia; Eugenio Carretta; F. D’Antona; M. Di Criscienzo; Sara Lucatello; M. Monelli; A. Pietrinferni
We use Hubble Space Telescope (HST) and ground-based imaging to study the multiple populations of 47 Tucanae (47 Tuc), combining high-precision photometry with calculations of synthetic spectra. Using filters covering a wide range of wavelengths, our HST photometry splits the main sequence into two branches, and we find that this duality is repeated in the subgiant and red giant regions, and on the horizontal branch. We calculate theoretical stellar atmospheres for main-sequence stars, assuming different chemical composition mixtures, and we compare their predicted colors through the HST filters with our observed colors. We find that we can match the complex of observed colors with a pair of populations, one with primeval abundance and another with enhanced nitrogen and a small helium enhancement, but with depleted C and O. We confirm that models of red giant and red horizontal branch stars with that pair of compositions also give colors that fit our observations. We suggest that the different strengths of molecular bands of OH, CN, CH, and NH, falling in different photometric bands, are responsible for the color splits of the two populations. Near the cluster center, in each portion of the color-magnitude diagram the population with primeval abundances makes up only ~20% of the stars, a fraction that increases outward, approaching equality in the outskirts of the cluster, with a fraction ~30% averaged over the whole cluster. Thus the second, He/N-enriched population is more concentrated and contributes the majority of the present-day stellar content of the cluster. We present evidence that the color-magnitude diagram of 47 Tuc consists of intertwined sequences of the two populations, whose separate identities can be followed continuously from the main sequence up to the red giant branch, and thence to the horizontal branch. A third population is visible only in the subgiant branch, where it includes ~8% of the stars.
The Astrophysical Journal | 2007
Santi Cassisi; Alexander Y. Potekhin; A. Pietrinferni; Marcio Catelan; Maurizio Salaris
We review the theory of electron-conduction opacity, a fundamental ingredient in the computation of low-mass stellar models; shortcomings and limitations of the existing calculations used in stellar evolution are discussed. We then present new determinations of the electron-conduction opacity in stellar conditions for an arbitrary chemical composition that improve over previous works and, most importantly, cover the whole parameter space relevant to stellar evolution models (i.e., both the regime of partial and high electron degeneracy). A detailed comparison with the currently used tabulations is also performed. The impact of our new opacities on the evolution of low-mass stars is assessed by computing stellar models along both the H- and He-burning evolutionary phases, as well as main sequence models of very low-mass stars and white dwarf cooling tracks.
Astronomy and Astrophysics | 2011
L. Sbordone; Maurizio Salaris; A. Weiss; Santi Cassisi
We calculated synthetic spectra for typical chemical element mixtures (i.e., a standard α-enhanced distribution, and distributions displaying CN and ONa anticorrelations) found in the various subpopulations harboured by individual Galactic globular clusters. From the spectra we determined bolometric corrections to the standard Johnson-Cousins and Stromgren filters and finally predicted colours. These bolometric corrections and colour-transformations, coupled to our theoretical isochrones with the appropriate chemical composition, provided us with a complete and self-consistent set of theoretical predictions for the effect of abundance variations on the observed cluster colour–magnitude diagrams. CNO abundance variations affect mainly wavelengths shorter than ∼400 nm owing to the rise of molecular absorption bands in cooler atmospheres. As a consequence, colour and magnitude changes are largest in the blue filters, independently of using broad or intermediate bandpasses. Colour–magnitude diagrams involving uvy and UB filters (and their various possible colour combinations) are therefore best suited to infer photometrically the presence of multiple stellar generations in individual clusters. They are particularly sensitive to variations in the N abundance, with the largest variations affecting the red giant branch (RGB) and lower main sequence (MS). BVI diagrams are expected to display multiple sequences only if the different populations are characterized by variations of the C+N+ Os um and/or helium abundance that lead to changes in luminosity and effective temperature, but leave the flux distribution above 400 nm practically unaffected. A variation of just the helium abundance up to the level we investigate here exclusively affects the interior structure of stars, and is largely irrelevant for the atmospheric structure and the resulting flux distribution in the whole wavelength range spanned by our analysis.
The Astrophysical Journal | 2000
M. Zoccali; Santi Cassisi; Jay A. Frogel; Andrew Gould; Sergio Ortolani; Alvio Renzini; R. Michael Rich; Andrew W. Stephens
We present a luminosity function (LF) for lower main sequence stars in the Galactic bulge near (1, b) _ (0°, —6°) to M,, — 9.3. This LF is derived from HST+NICMOS observations of a region of 221.’5 x 221’5, with the F11OW and F160W filters. Our derived mass function extends to 0.15M ⊙with a power law slope of a = —1.33 ± 0.07. Although shallower than the Salpeter one, this IMF is steeper than that recently found for the Galactic disk (a = —0.8 and a = —0.54 from the data of Reid & Gizis,1997,and Gould et al. 1997, respectively, in the same mass interval), but is virtually identical to the disk IMF derived by Kroupa et al. (1993). The bulge IMF is also quite similar to the mass functions derived for those globular clusters which are believed to have experienced little or no dynamical evolution