Santiago Benitez-Vieyra
National University of Cordoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Santiago Benitez-Vieyra.
Journal of Evolutionary Biology | 2009
Santiago Benitez-Vieyra; A. M. Medina; Andrea A. Cocucci
By mimicking shape and female mating pheromones, flowers of sexually deceptive orchids attract sexually excited males which pollinate them while trying to copulate. Although many studies have demonstrated the crucial importance of odour signals in these systems, most flowers pollinated by pseudocopulation resemble, at least superficially, an insect body and these visual cues may be important to cheat pollinators. In this 2‐year study, we show that the shape of the labellum of Geoblasta pennicillata is a target of pollinator‐mediated natural selection. Contrary to our expectations, plants with a labellum shape more similar to female wasps were not favoured. The strength and pattern of phenotypic selection varied between study years and sexual functions. Although selection through female success was probably associated to the fine‐tuning of the mechanical fit between flower form and male wasp, shape was the target of natural selection through male success in both study years indicating that male wasps use this trait when choosing flowers. The imperfect mimicry and patterns of selection observed indicated that an exact imitation is not needed to attract and deceive the pollinators and they suggested a receiver perceptual bias towards uncommon phenotypes.
PLOS ONE | 2012
Marcela Moré; Felipe W. Amorim; Santiago Benitez-Vieyra; A. Martín Medina; Marlies Sazima; Andrea A. Cocucci
Background Some species of long-spurred orchids achieve pollination by a close association with long-tongued hawkmoths. Among them, several Habenaria species present specialized mechanisms, where pollination success depends on the attachment of pollinaria onto the heads of hawkmoths with very long proboscises. However, in the Neotropical region such moths are less abundant than their shorter-tongued relatives and are also prone to population fluctuations. Both factors may give rise to differences in pollinator-mediated selection on floral traits through time and space. Methodology/Principal Findings We characterized hawkmoth assemblages and estimated phenotypic selection gradients on orchid spur lengths in populations of three South American Habenaria species. We examined the match between hawkmoth proboscis and flower spur lengths to determine whether pollinators may act as selective agents on flower morphology. We found significant directional selection on spur length only in Habenaria gourlieana, where most pollinators had proboscises longer than the mean of orchid spur length. Conclusions/Significance Phenotypic selection is dependent on the mutual match between pollinator and flower morphologies. However, our findings indicate that pollinator-mediated selection may vary through time and space according to local variations in pollinator assemblages.
Proceedings of the Royal Society of London B: Biological Sciences | 2014
Santiago Benitez-Vieyra; Juan Fornoni; Jessica Pérez-Alquicira; Karina Boege; César A. Domínguez
Within-individual variation in floral advertising and reward traits is a feature experienced by pollinators that visit different flowers of the same plant. Pollinators can use advertising traits to gather information about the quality and amount of rewards, leading to the evolution of signal–reward correlations. As long as plants differ in the reliability of their signals and pollinators base their foraging decisions on this information, natural selection should act on within-individual correlations between signals and rewards. Because birds and bees differ in their cognitive capabilities, and use different floral traits as signals, we tested the occurrence of adaptive divergence of the within-individual signal–reward correlations among Salvia species that are pollinated either by bees or by hummingbirds. They are expected to use different floral advertising traits: frontal traits in the case of bees and side traits in the case of hummingbirds. We confirmed this expectation as bee- and hummingbird-pollinated species differed in which specific traits are predominantly associated with nectar reward at the within-individual level. Our findings highlight the adaptive value of within-individual variation and covariation patterns, commonly disregarded as ‘environmental noise’, and are consistent with the hypothesis that pollinator-mediated selection affects the correlation pattern among floral traits.
Evolutionary Ecology | 2012
Santiago Benitez-Vieyra; Evangelina Glinos; A. Martín Medina; Andrea A. Cocucci
Over the years, selection can vary in intensity and direction. Selection on traits related to the mechanical fit with pollinators is expected to vary according to changes in pollinator assemblage. Provided that pollinators do not change over time selection on traits related to attraction, such as floral fragrance, is expected to be mainly affected by environmental conditions because its production is resource limited. We examined selection patterns on osmophore area (as a surrogate of odour production), nectary depth and flower number in the orchid Cyclopogon elatus during four consecutive years, and simultaneously recorded variations in weather conditions and differences in pollinator assemblages. We also studied whether the osmophore area was positively related to pollinator attraction and examined its possible trade-off with phenology. We found that patterns of selection on nectary depth did not vary significantly among years. This lack of temporal variation is consistent with the stability of a single bee species as the predominant pollinator. On the contrary, selection on osmophore area varied markedly and was negative during the driest year. Negative selection indicates that although pollinators visited plants with larger osmophore areas more frequently, it did not translate into higher fitness. Plants with larger osmophore areas begin to flower earlier and might be more affected by weather conditions, not directly due to resource availability but indirectly because of the lack of pollinators at the beginning of the flowering season.
Annals of Botany | 2016
Marina M. Strelin; Santiago Benitez-Vieyra; Juan Fornoni; Christian Peter Klingenberg; Andrea A. Cocucci
BACKGROUND AND AIMS Phenotypic diversification of flowers is frequently attributed to selection by different functional groups of pollinators. During optimization of floral phenotype, developmental robustness to genetic and non-genetic perturbations is expected to limit the phenotypic space available for future evolutionary changes. Although adaptive divergence can occur without altering the basic developmental programme of the flower (ontogenetic scaling hypothesis), the rarity of reversion to ancestral states following adaptive radiations of pollination syndromes suggests that changes in the ancestral developmental programme of the flower are common during such evolutionary transitions. Evidence suggests that flower diversification into different pollination syndromes in the Loasoideae genus Caiophora took place during a recent adaptive radiation in the central Andes. This involved transitions from bee to hummingbird and small rodent pollination. The aim of this work was to examine if the adaptive radiation of pollination syndromes in Caiophora occurred through ontogenetic scaling or involved a departure from the ontogenetic pattern basal to this genus. METHODS We used geometric morphometric variables to describe the shape and size of floral structures taking part in the pollination mechanism of Loasoideae. This approach was used to characterize the developmental trajectories of three species basal to the genus Caiophora through shape-size relationships (ontogenetic allometry). We then tested if the shape-size combinations of these structures in mature flowers of derived Caiophora species fall within the phenotypic space predicted by the development of basal species. KEY RESULTS Variation in the size and shape of Caiophora flowers does not overlap with the pattern of ontogenetic allometry of basal species. Derived bee-, hummingbird- and rodent-pollinated species had divergent ontogenetic patterns of floral development from that observed for basal bee-pollinated species. CONCLUSIONS The adaptive radiation of Caiophora involved significant changes in the developmental pattern of the flowers, rejecting the ontogenetic scaling hypothesis.
Plant Systematics and Evolution | 2018
Itzi Fragoso-Martínez; Martha Martínez-Gordillo; Gerardo A. Salazar; Federico Sazatornil; Aaron A. Jenks; María Del Rosario García Peña; Giovanna Barrera-Aveleida; Santiago Benitez-Vieyra; Susana Magallón; Guadalupe Cornejo-Tenorio; Carolina Granados Mendoza
Salvia subg. Calosphace (Lamiaceae, Lamiales) is a highly diverse clade endemic to the New World. The phylogenetic relationships of Calosphace have been previously investigated using DNA sequences of nuclear ITS region and plastid psbA–trnH intergenic spacer, but the resulting trees lack resolution and support for many clades. The present paper reassesses the phylogenetic relationships of subgenus Calosphace, including a broader taxon sampling, with a special focus on representing previously unsampled sections, and using an additional plastid marker (trnL–trnF region). Our results show increased resolution and overall patterns of support, recovering ten main clades. Within core Calosphace, the most inclusive of these main clades, 17 new subclades were identified. Of the 42 sections for which more than one species was analysed, only 12 are monophyletic. Our biogeographical analysis identified at least twelve migrations to South America from Mexican and Central American lineages, in agreement with previous suggestions of multiple origins of South American Calosphace diversity. This analysis also confirmed a colonization of the Antilles by Andean lineages. The reconstruction of ancestral states of pollination syndromes showed multiple shifts to ornithophily from melittophily and one reversal to the latter.
PLOS ONE | 2017
Priscila Andre Sanz-Veiga; Leonardo Ré Jorge; Santiago Benitez-Vieyra; Felipe W. Amorim
Extrafloral nectaries can occur in both vegetative and reproductive plant structures. In many Rubiaceae species in the Brazilian Cerrado, after corolla abscission, the floral nectary continues to secret nectar throughout fruit development originating post-floral pericarpial nectaries which commonly attract many ant species. The occurrence of such nectar secreting structures might be strategic for fruit protection against seed predators, as plants are expected to invest higher on more valuable and vulnerable parts. Here, we performed ant exclusion experiments to investigate whether the interaction with ants mediated by the pericarpial nectaries of Tocoyena formosa affects plant reproductive success by reducing the number of pre-dispersal seed predators. We also assessed whether ant protection was dependent on ant species composition and resource availability. Although most of the plants were visited by large and aggressive ant species, such as Ectatomma tuberculatum and species of the genus Camponotus, ants did not protect fruits against seed predators. Furthermore, the result of the interaction was neither related to ant species composition nor to the availability of resources. We suggest that these results may be related to the nature and behavior of the most important seed predators, like Hemicolpus abdominalis weevil which the exoskeleton toughness prevent it from being predated by most ant species. On the other hand, not explored factors, such as reward quality, local ant abundance, ant colony characteristics and/or the presence of alternative energetic sources could also account for variations in ant frequency, composition, and finally ant protective effects, highlighting the conditionality of facultative plant-ant mutualisms.
Journal of Evolutionary Biology | 2016
C. C. Maubecin; Andrea Cosacov; Alicia N. Sérsic; Juan Fornoni; Santiago Benitez-Vieyra
Quaternary environmental changes substantially impacted the landscape and promoted rapid evolutionary changes in many species; however, analyses of adaptive phenotypic variation in plants have usually neglected the underlying historical context. Here, we associate phylogeography and phenotypic evolution by analysing the divergence of Calceolaria polyrhiza multivariate floral phenotype after a Pleistocene post‐glacial expansion in Patagonia. Phenotypic matrix (P) properties (size, shape, orientation and phenotypic integration) of six refugium and six recent populations from two different phylogroups were compared following different approaches. We found that P‐matrix shape and orientation remained stable despite the strong phylogeographic footprint of post‐glacial expansion. However, average proportional reductions in matrix size supported the expectation that drift had a significant effect on the floral phenotype in the northern phylogroup. When phylogeographic history was not included in the analyses, the results overestimated phenotypic differences, whereas under explicit phylogeographic control, drift appeared as the best explanation for matrix differences. In general, recent populations showed a larger phenotypic divergence among them, but a lower overall phenotypic variation than refugium populations. Random Skewers analyses indicated a lower potential response to selection in recently colonized populations than in refugium populations. We discuss that the combination of phylogeographic analyses with geographical distribution of functional phenotypic (genotypic) variation is critical not only to understand how historical effects influence adaptive evolution, but also to improve field comparisons in evolutionary ecology studies.
PLOS ONE | 2016
Diego J. Valdez; Santiago Benitez-Vieyra
For birds, plumage color perception is critical in social interactions such as courtship, in both monochromatic and dichromatic species. In the Eared Dove (Zenaida auriculata), perhaps the most abundant South American Columbiforme, the plumage of males and females looks alike and both sexes share the same melanistic coloration with gray and pink tones. The aim of this study was therefore to determine whether evident sexual dichromatism exists in the plumage of the Eared Dove using a spectrophotometry technique in the avian-visible range (300–700 nm). The results of the classic colorimetric variables analysis (hue, chroma and brightness) show that males are in general brighter and have higher UV chroma values than females. The avian visual model points to differences in achromatic and chromatic levels between males and females in body regions possibly involved in sexual selection (e.g. the crown). The model also indicates chromatic or achromatic differences in body regions not subject to sexual selection such as the black spots on the wing coverts and white tail bands, both of which may be involved in intra- or inter-gender-specific communication.
Functional Ecology | 2006
Santiago Benitez-Vieyra; A. M. Medina; Evangelina Glinos; Andrea A. Cocucci