Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Santo Motta is active.

Publication


Featured researches published by Santo Motta.


BMC Bioinformatics | 2006

Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator

Pier Luigi Lollini; Santo Motta; Francesco Pappalardo

BackgroundImmunological prevention of cancer has been obtained in HER-2/neu transgenic mice using a vaccine that combines 3 different immune stimuli (Triplex vaccine) that is repeatedly administered for the entire lifespan of the host (Chronic protocol). Biological experiments leave open the question of whether the Chronic protocol is indeed the minimal vaccination schedule affording 100% protection, or whether shorter protocols could be applied that would result in the same efficacy. A biological solution would require an enormous number of experiments, each lasting at least one year. Therefore we approached this problem by developing a simulator (SimTriplex) which describes the immune response activated by Triplex vaccine. This simulator, tested against in vivo experiments on HER-2/neu mice, reproduces all the vaccination protocols used in the in vivo experiments. The simulator should describe any vaccination protocol within the tested range. A possible solution to the former open question using a minimal search strategy based on a genetic algorithm is presented. This is the first step toward a more general approach of biological or clinical constraints for the search of an effective vaccination schedule.ResultsThe results suggest that the Chronic protocol included a good number of redundant vaccine administrations, and that maximal protection could still be obtained with a number of vaccinations ~40% less than with the Chronic protocol.ConclusionThis approach may have important connotations with regard to translation of cancer immunopreventive approaches to human situations, in which it is desirable to minimize the number of vaccinations. We are currently setting up experiments in mice to test whether the actual effectiveness of the vaccination protocol agrees with the genetic algorithm.


Briefings in Bioinformatics | 2013

Mathematical modeling of biological systems

Santo Motta; Francesco Pappalardo

Mathematical and computational models are increasingly used to help interpret biomedical data produced by high-throughput genomics and proteomics projects. The application of advanced computer models enabling the simulation of complex biological processes generates hypotheses and suggests experiments. Appropriately interfaced with biomedical databases, models are necessary for rapid access to, and sharing of knowledge through data mining and knowledge discovery approaches.


Cancer Research | 2010

In silico Modeling and In vivo Efficacy of Cancer-Preventive Vaccinations

Arianna Palladini; Giordano Nicoletti; Francesco Pappalardo; Annalisa Murgo; Valentina Grosso; Valeria Stivani; Marianna L. Ianzano; Agnese Antognoli; Stefania Croci; Lorena Landuzzi; Carla De Giovanni; Patrizia Nanni; Santo Motta; Pier Luigi Lollini

Cancer vaccine feasibility would benefit from reducing the number and duration of vaccinations without diminishing efficacy. However, the duration of in vivo studies and the huge number of possible variations in vaccination protocols have discouraged their optimization. In this study, we employed an established mouse model of preventive vaccination using HER-2/neu transgenic mice (BALB-neuT) to validate in silico-designed protocols that reduce the number of vaccinations and optimize efficacy. With biological training, the in silico model captured the overall in vivo behavior and highlighted certain critical issues. First, although vaccinations could be reduced in number without sacrificing efficacy, the intensity of early vaccinations was a key determinant of long-term tumor prevention needed for predictive utility in the model. Second, after vaccinations ended, older mice exhibited more rapid tumor onset and sharper decline in antibody levels than young mice, emphasizing immune aging as a key variable in models of vaccine protocols for elderly individuals. Long-term studies confirmed predictions of in silico modeling in which an immune plateau phase, once reached, could be maintained with a reduced number of vaccinations. Furthermore, that rapid priming in young mice is required for long-term antitumor protection, and that the accuracy of mathematical modeling of early immune responses is critical. Finally, that the design and modeling of cancer vaccines and vaccination protocols must take into account the progressive aging of the immune system, by striving to boost immune responses in elderly hosts. Our results show that an integrated in vivo-in silico approach could improve both mathematical and biological models of cancer immunoprevention.


Bioinformatics | 2007

Optimization of HAART with genetic algorithms and agent-based models of HIV infection

Filippo Castiglione; Francesco Pappalardo; Massimo Bernaschi; Santo Motta

MOTIVATION Highly Active AntiRetroviral Therapies (HAART) can prolong life significantly to people infected by HIV since, although unable to eradicate the virus, they are quite effective in maintaining control of the infection. However, since HAART have several undesirable side effects, it is considered useful to suspend the therapy according to a suitable schedule of Structured Therapeutic Interruptions (STI). In the present article we describe an application of genetic algorithms (GA) aimed at finding the optimal schedule for a HAART simulated with an agent-based model (ABM) of the immune system that reproduces the most significant features of the response of an organism to the HIV-1 infection. RESULTS The genetic algorithm helps in finding an optimal therapeutic schedule that maximizes immune restoration, minimizes the viral count and, through appropriate interruptions of the therapy, minimizes the dose of drug administered to the simulated patient. To validate the efficacy of the therapy that the genetic algorithm indicates as optimal, we ran simulations of opportunistic diseases and found that the selected therapy shows the best survival curve among the different simulated control groups. AVAILABILITY A version of the C-ImmSim simulator is available at http://www.iac.cnr.it/~filippo/c-ImmSim.html


Bioinformatics | 2008

Modeling immune system control of atherogenesis

Francesco Pappalardo; Salvatore Musumeci; Santo Motta

MOTIVATION Atherosclerosis is a disease that is present in almost all humans, typically beginning in early adolescence. It is a human disease broadly investigated, that is amenable to quantitative analysis. Oxidized low-density lipoproteins (LDLs) and their autoantibodies are involved in the development of atherosclerosis in animal models, but their role in humans is still not clear. Computer models may represent a virtual environment to perform experiments not possible in human volunteers that can provide a useful instrument for monitoring both the evolution of atherosclerotic lesions and to quantify the efficacy of treatments, including vaccines, oriented to reduce the LDLs and their oxidized fraction. RESULTS We report the application of an agent-based model to model both the immune response to atherogenesis and the atheromatous plaque progression in a generic artery wall. The level of oxidized LDLs, the immune humoral response with production of autoantibodies, the macrophages activity and the formation of foam cells are in good agreement with available clinical data, including the formation of atheromatous plaques in patients affected by hypercholesterolemia. AVAILABILITY The model is available at http://www.immunogrid.eu/atherogenesis/


Briefings in Bioinformatics | 2008

ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization

Francesco Pappalardo; Mark Halling-Brown; Nicolas Rapin; Ping Zhang; Davide Alemani; Andrew Emerson; Paola Paci; Patrice Duroux; Marzio Pennisi; Arianna Palladini; Olivio Miotto; Daniel Churchill; Elda Rossi; Adrian J. Shepherd; David S. Moss; Filippo Castiglione; Massimo Bernaschi; Marie-Paule Lefranc; Søren Brunak; Santo Motta; Pier Luigi Lollini; K. E. Basford; Vladimir Brusic

Vaccine research is a combinatorial science requiring computational analysis of vaccine components, formulations and optimization. We have developed a framework that combines computational tools for the study of immune function and vaccine development. This framework, named ImmunoGrid combines conceptual models of the immune system, models of antigen processing and presentation, system-level models of the immune system, Grid computing, and database technology to facilitate discovery, formulation and optimization of vaccines. ImmunoGrid modules share common conceptual models and ontologies. The ImmunoGrid portal offers access to educational simulators where previously defined cases can be displayed, and to research simulators that allow the development of new, or tuning of existing, computational models. The portal is accessible at .


Biotechnology Advances | 2010

Vaccine protocols optimization: In silico experiences

Francesco Pappalardo; Marzio Pennisi; Filippo Castiglione; Santo Motta

Vaccines represent a special class of drugs, capable of stimulating immune system responses against pathogens and tumors. Vaccine development is a lengthy process that includes expensive laboratory experiments in order to assess safety and effectiveness. As the efficacy of a vaccine was demonstrated by biological/chemical investigations and pre-clinical studies, then a major problem is represented by the search for an optimal vaccination dosage. Optimality here assumes the meaning of assuring a high degree of efficacy and safety (lack of toxic or side effects). In lack of quantitative methods, this is usually achieved by a consensus technique, a public statement on a particular aspect of medical knowledge available at the time it was written, and that is generally agreed upon as the evidence-based, state-of-the-art (or state-of-science) knowledge by a representative group of experts in that area. In this article, we focus on the difficult problem of the search for an optimal vaccination dosage in the field of tumor immunology, that is a major issue in biomedical research. This, indeed, represents a first step toward a personalized medicine approach.


Immunome Research | 2005

Modelling vaccination schedules for a cancer immunoprevention vaccine

Santo Motta; Filippo Castiglione; Pier Luigi Lollini; Francesco Pappalardo

We present a systematic approach to search for an effective vaccination schedule using mathematical computerized models. Our study is based on our previous model that simulates the cancer vs immune system competition activated by tumor vaccine. This model accurately reproduces in-vivo experiments results on HER-2/neu mice treated with the immuno-prevention cancer vaccine (Triplex) for mammary carcinoma. In vivo experiments have shown the effectiveness of Triplex vaccine in protection of mice from mammary carcinoma. The full protection was conferred using chronic (prophylactic) vaccination protocol while therapeutic vaccination was less effcient.In the present paper we use the computer simulations to systematically search for a vaccination schedule which prevents solid tumor formation. The strategy we used for defining a successful vaccination schedule is to control the number of cancer cells with vaccination cycles. We found that, applying the vaccination scheme used in in-vivo experiments, the number of vaccine injections can be reduced roughly by 30%.


Journal of Immunological Methods | 2012

Combining cellular automata and lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition

Davide Alemani; Francesco Pappalardo; Marzio Pennisi; Santo Motta; Vladimir Brusic

In the last decades the Lattice Boltzmann method (LB) has been successfully used to simulate a variety of processes. The LB model describes the microscopic processes occurring at the cellular level and the macroscopic processes occurring at the continuum level with a unique function, the probability distribution function. Recently, it has been tried to couple deterministic approaches with probabilistic cellular automata (probabilistic CA) methods with the aim to model temporal evolution of tumor growths and three dimensional spatial evolution, obtaining hybrid methodologies. Despite the good results attained by CA-PDE methods, there is one important issue which has not been completely solved: the intrinsic stochastic nature of the interactions at the interface between cellular (microscopic) and continuum (macroscopic) level. CA methods are able to cope with the stochastic phenomena because of their probabilistic nature, while PDE methods are fully deterministic. Even if the coupling is mathematically correct, there could be important statistical effects that could be missed by the PDE approach. For such a reason, to be able to develop and manage a model that takes into account all these three level of complexity (cellular, molecular and continuum), we believe that PDE should be replaced with a statistic and stochastic model based on the numerical discretization of the Boltzmann equation: The Lattice Boltzmann (LB) method. In this work we introduce a new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach.


Philosophical Transactions of the Royal Society A | 2010

ImmunoGrid: towards agent-based simulations of the human immune system at a natural scale †

Mark Halling-Brown; Francesco Pappalardo; Nicolas Rapin; Ping Zhang; Davide Alemani; Andrew Emerson; Filippo Castiglione; Patrice Duroux; Marzio Pennisi; Olivo Miotto; Daniel Churchill; Elda Rossi; David S. Moss; Clare Sansom; Massimo Bernaschi; Marie-Paule Lefranc; Søren Brunak; Ole Lund; Santo Motta; Pier Luigi Lollini; Annalisa Murgo; Arianna Palladini; K. E. Basford; Vladimir Brusic; Adrian J. Shepherd

The ultimate aim of the EU-funded ImmunoGrid project is to develop a natural-scale model of the human immune system—that is, one that reflects both the diversity and the relative proportions of the molecules and cells that comprise it—together with the grid infrastructure necessary to apply this model to specific applications in the field of immunology. These objectives present the ImmunoGrid Consortium with formidable challenges in terms of complexity of the immune system, our partial understanding about how the immune system works, the lack of reliable data and the scale of computational resources required. In this paper, we explain the key challenges and the approaches adopted to overcome them. We also consider wider implications for the present ambitious plans to develop natural-scale, integrated models of the human body that can make contributions to personalized health care, such as the European Virtual Physiological Human initiative. Finally, we ask a key question: How long will it take us to resolve these challenges and when can we expect to have fully functional models that will deliver health-care benefits in the form of personalized care solutions and improved disease prevention?

Collaboration


Dive into the Santo Motta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge