Santosh Dhakal
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Santosh Dhakal.
Journal of Virology | 2016
Yanhua Li; Duan-Liang Shyu; Pengcheng Shang; Jianfa Bai; Kang Ouyang; Santosh Dhakal; Jagadish Hiremath; Basavaraj Binjawadagi; Gourapura J. Renukaradhya; Ying Fang
ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1β (nsp1β) is a multifunctional viral protein, which is involved in suppressing the host innate immune response and activating a unique −2/−1 programmed ribosomal frameshifting (PRF) signal for the expression of frameshifting products. In this study, site-directed mutagenesis analysis showed that the R128A or R129A mutation introduced into a highly conserved motif (123GKYLQRRLQ131) reduced the ability of nsp1β to suppress interferon beta (IFN-β) activation and also impaired nsp1βs function as a PRF transactivator. Three recombinant viruses, vR128A, vR129A, and vRR129AA, carrying single or double mutations in the GKYLQRRLQ motif were characterized. In comparison to the wild-type (WT) virus, vR128A and vR129A showed slightly reduced growth abilities, while the vRR129AA mutant had a significantly reduced growth ability in infected cells. Consistent with the attenuated growth phenotype in vitro, pigs infected with nsp1β mutants had lower levels of viremia than did WT virus-infected pigs. Compared to the WT virus in infected cells, all three mutated viruses stimulated high levels of IFN-α expression and exhibited a reduced ability to suppress the mRNA expression of selected interferon-stimulated genes (ISGs). In pigs infected with nsp1β mutants, IFN-α production was increased in the lungs at early time points postinfection, which was correlated with increased innate NK cell function. Furthermore, the augmented innate response was consistent with the increased production of IFN-γ in pigs infected with mutated viruses. These data demonstrate that residues R128 and R129 are critical for nsp1β function and that modifying these key residues in the GKYLQRRLQ motif attenuates virus growth ability and improves the innate and adaptive immune responses in infected animals. IMPORTANCE PRRSV infection induces poor antiviral innate IFN and cytokine responses, which results in weak adaptive immunity. One of the strategies in next-generation vaccine construction is to manipulate viral proteins/genetic elements involved in antagonizing the host immune response. PRRSV nsp1β was identified to be a strong innate immune antagonist. In this study, two basic amino acids, R128 and R129, in a highly conserved GKYLQRRLQ motif were determined to be critical for nsp1β function. Mutations introduced into these two residues attenuated virus growth and improved the innate and adaptive immune responses of infected animals. Technologies developed in this study could be broadly applied to current commercial PRRSV modified live-virus (MLV) vaccines and other candidate vaccines.
PLOS ONE | 2016
Jagadish Hiremath; Kyung-il Kang; Ming Xia; Mohamed Elaish; Basavaraj Binjawadagi; Kang Ouyang; Santosh Dhakal; Jesus Arcos; Jordi B. Torrelles; Xi Jiang; Chang Won Lee; Gourapura J. Renukaradhya
Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.
Vaccine | 2017
Santosh Dhakal; Jonathan T. Goodman; Kathryn Bondra; Yashavanth Shaan Lakshmanappa; Jagadish Hiremath; Duan-Liang Shyu; Kang Ouyang; Kyung-il Kang; Steven Krakowka; Michael J. Wannemuehler; Chang Won Lee; Balaji Narasimhan; Gourapura J. Renukaradhya
We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study, we evaluated the efficacy of ∼200nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine), and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses, antigen-specific proliferation of peripheral blood mononuclear cells, gross and microscopic lung lesions, and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4+CD8αα+ T helper and CD8+ cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition, pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically, increased IFN-γ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However, in the KAg nanovaccine-immunized pigs, hemagglutination inhibition, IgG and IgA antibody responses, and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall, our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in pigs, with promise to induce cross-protective immunity.
Journal of Controlled Release | 2017
Santosh Dhakal; Jagadish Hiremath; Kathryn Bondra; Yashavanth Shaan Lakshmanappa; Duan-Liang Shyu; Kang Ouyang; Kyung-il Kang; Basavaraj Binjawadagi; Jonathan T. Goodman; Kairat Tabynov; Steven Krakowka; Balaji Narasimhan; Chang Won Lee; Gourapura J. Renukaradhya
ABSTRACT Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross‐protection against evolving viruses in the field. Poly(lactic‐co‐glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA‐KAg) were prepared, which were spherical in shape with 200 to 300 nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA‐KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T‐helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA‐KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA‐KAg vaccinated pig lung airways were observed. Immunologically, PLGA‐KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN‐&ggr; secreting total T cells, T‐helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA‐NPs reduced the clinical disease and induced cross‐protective cell‐mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans.
Veterinary Microbiology | 2016
Varun Dwivedi; Cordelia Manickam; Santosh Dhakal; Basavaraj Binjawadagi; Kang Ouyang; Jagadish Hiremath; Mahesh Khatri; Jacquelyn Gervay Hague; Chang Won Lee; Gourapura J. Renukaradhya
Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract.
Journal of the Science of Food and Agriculture | 2016
Santosh Dhakal; M. Monica Giusti; V.M. Balasubramaniam
BACKGROUND A study was conducted to investigate the impact of high pressure (450 and 600 MPa at 30 °C) and thermal (72, 85 and 99 °C at 0.1 MPa) treatments on dispersive and aggregative characteristics of almond milk. Experiments were conducted using a kinetic pressure testing unit and water bath. Particle size distribution, microstructure, UV absorption spectra, pH and color changes of processed and unprocessed samples were analyzed. RESULTS Raw almond milk represented the mono model particle size distribution with average particle diameters of 2 to 3 µm. Thermal or pressure treatment of almond milk shifted the particle size distribution towards right and increased particle size by five- to six-fold. Micrographs confirmed that both the treatments increased particle size due to aggregation of macromolecules. Pressure treatment produced relatively more and larger aggregates than those produced by heat treated samples. The apparent aggregation rate constant for 450 MPa and 600 MPa processed samples were k450MPa,30°C = 0.0058 s(-1) and k600MPa,30°C = 0.0095 s(-1) respectively. CONCLUSIONS This study showed that dispersive and aggregative properties of high pressure and heat-treated almond milk were different due to differences in protein denaturation, particles coagulation and aggregates morphological characteristics. Knowledge gained from the study will help food processors to formulate novel plant-based beverages treated with high pressure.
Veterinary World | 2015
Shristi Ghimire; Santosh Dhakal
Japanese encephalitis (JE) is a mosquito borne zoonotic disease caused by JE virus (JEV). JE has been endemic in Terai region, the lowland plains of Nepal bordering India, since 1978. However, in recent years cases of JE has been continuously reported from high altitude zones of hills and mountains. Irrigated rice farming system, expanded pig husbandry practices, inadequate vaccine coverage, low level of public awareness and climate change favoring mosquito breeding in higher altitudes might be the probable risk factors for emergence and re-emergence of JE in Nepal. Repeated outbreak in endemic areas and geographical expansion to newer areas have created huge challenge for JE prevention and control. At present, JE is one of the major public health concern of Nepal. Expanding vaccine coverage, improving agricultural practices, generating public awareness, supporting for use of mosquito avoiding practices and regional collaboration at border against JE can be helpful in getting better control over it in future.
BMC Microbiology | 2014
Laxman Ghimire; Dinesh Kumar Singh; Hom Bahadur Basnet; Rebanta Kumar Bhattarai; Santosh Dhakal; Bishwas Sharma
BackgroundCampylobacter is the primary cause of food borne gastroenteritis. Moreover, the emergence of multiple drug resistant campylobacters from poultry and pork has produced a potential threat to public health. Research addressing these issues is sparse in Nepal. So, this cross-sectional study aims at determining the prevalence, antibiogram and risk factors of campylobacters from dressed porcine carcass of Chitwan, Nepal.ResultsWe collected 139 samples of dressed porcine carcass from 10 different pork shops located in Chitwan district and processed according to OIE Terrestrial Manual, 2008, chapter 2.8.10. Antibiogram of identified Campylobacter spp. was evaluated against nine commonly used antibiotics by using disc diffusion method following CLSI guidelines. The prevalence of Campylobacter spp. was 38.84% (C. coli 76% and C. jejuni 24%). There was no significant difference (p > 0.05) between the prevalence rate of male (32.4%) and female (41%) carcass. Ampicillin and erythromycin showed the highest resistance (92.59% each) followed by colistin (72.2%), tetracycline (61.1%), nalidixic acid and cotrimoxazole (44.4% each), ciprofloxacin (31.5%) and gentamicin (5.56%). Moreover, 77.8% of the isolates were resistant to more than two antimicrobials. Nalidixic acid and tetracycline showed significant difference (p < 0.05) in the resistivity pattern among different species of Campylobacters. The association between prevalence rate and regular sanitization of slaughter slab equipments was significant (p < 0.05). Similarly, prevalence rate was significantly associated (p < 0.01) with chilling and contamination of intestinal content with carcass.ConclusionsThe pork meat of Chitwan is highly contaminated with antibiotic-resistant Campylobacters and slaughtering practices play significant role in contamination. It is necessary to train the butchers about hygienic slaughtering practice. The consumers as well as butchers should adopt safety measures to prevent themselves from antibiotic resistant campylobacters. The veterinary practitioners should adopt prudent use of antibiotics in pigs.
Frontiers in Immunology | 2018
Santosh Dhakal; Sankar Renu; Shristi Ghimire; Yashavanth Shaan Lakshmanappa; Bradley T. Hogshead; Ninoshkaly Feliciano-Ruiz; Fangjia Lu; Harm HogenEsch; Steven Krakowka; Chang Won Lee; Gourapura J. Renukaradhya
Annually, swine influenza A virus (SwIAV) causes severe economic loss to swine industry. Currently used inactivated SwIAV vaccines administered by intramuscular injection provide homologous protection, but limited heterologous protection against constantly evolving field viruses, attributable to the induction of inadequate levels of mucosal IgA and cellular immune responses in the respiratory tract. A novel vaccine delivery platform using mucoadhesive chitosan nanoparticles (CNPs) administered through intranasal (IN) route has the potential to elicit strong mucosal and systemic immune responses in pigs. In this study, we evaluated the immune responses and cross-protective efficacy of IN chitosan encapsulated inactivated SwIAV vaccine in pigs. Killed SwIAV H1N2 (δ-lineage) antigens (KAg) were encapsulated in chitosan polymer-based nanoparticles (CNPs-KAg). The candidate vaccine was administered twice IN as mist to nursery pigs. Vaccinates and controls were then challenged with a zoonotic and virulent heterologous SwIAV H1N1 (γ-lineage). Pigs vaccinated with CNPs-KAg exhibited an enhanced IgG serum antibody and mucosal secretory IgA antibody responses in nasal swabs, bronchoalveolar lavage (BAL) fluids, and lung lysates that were reactive against homologous (H1N2), heterologous (H1N1), and heterosubtypic (H3N2) influenza A virus strains. Prior to challenge, an increased frequency of cytotoxic T lymphocytes, antigen-specific lymphocyte proliferation, and recall IFN-γ secretion by restimulated peripheral blood mononuclear cells in CNPs-KAg compared to control KAg vaccinates were observed. In CNPs-KAg vaccinated pigs challenged with heterologous virus reduced severity of macroscopic and microscopic influenza-associated pulmonary lesions were observed. Importantly, the infectious SwIAV titers in nasal swabs [days post-challenge (DPC) 4] and BAL fluid (DPC 6) were significantly (p < 0.05) reduced in CNPs-KAg vaccinates but not in KAg vaccinates when compared to the unvaccinated challenge controls. As well, an increased frequency of T helper memory cells and increased levels of recall IFNγ secretion by tracheobronchial lymph nodes cells were observed. In summary, chitosan SwIAV nanovaccine delivered by IN route elicited strong cross-reactive mucosal IgA and cellular immune responses in the respiratory tract that resulted in a reduced nasal viral shedding and lung virus titers in pigs. Thus, chitosan-based influenza nanovaccine may be an ideal candidate vaccine for use in pigs, and pig is a useful animal model for preclinical testing of particulate IN human influenza vaccines.
Veterinary Microbiology | 2016
Kairat Tabynov; Abylay Sansyzbay; Zhanara Tulemissova; Kaissar Tabynov; Santosh Dhakal; Aigul Samoltyrova; Gourapura J. Renukaradhya; Muratbay Mambetaliyev
Abstract The efficacy of a novel BEI-inactivated porcine reproductive and respiratory syndrome virus (PRRSV) candidate vaccine in pigs, developed at RIBSP Republic of Kazakhstan and delivered with an adjuvant Montanide™ Gel 01 ST (D/KV/ADJ) was compared with a commercial killed PRRSV vaccine (NVDC-JXA1, C/KV/ADJ) used widely in swine herds of the Republic of Kazakhstan. Clinical parameters (body temperature and respiratory disease scores), virological and immunological profiles [ELISA and virus neutralizing (VN) antibody titers], macroscopic lung lesions and viral load in the lungs (quantitative real-time PCR and cell culture assay) were assessed in vaccinated and both genotype 1 and 2 PRRSV challenged pigs. Our results showed that the commercial vaccine failed to protect pigs adequately against the clinical disease, viremia and lung lesions caused by the challenged field isolates, Kazakh strains of PRRSV type 1 and type 2 genotypes. In contrast, clinical protection, absence of viremia and lung lesions in D/KV/ADJ vaccinated pigs was associated with generation of VN antibodies in both homologous vaccine strain LKZ/2010 (PRRSV type 2) and a heterogeneous type 1 PRRSV strain (CM/08) challenged pigs. Thus, our data indicated the induction of cross-protective VN antibodies by D/KV/ADJ vaccine, and importantly demonstrated that an inactivated PRRSV vaccine could also induce cross-protective response across the viral genotype.