Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saori Hata is active.

Publication


Featured researches published by Saori Hata.


Journal of Biological Chemistry | 2009

Alcadein Cleavages by Amyloid β-Precursor Protein (APP) α- and γ-Secretases Generate Small Peptides, p3-Alcs, Indicating Alzheimer Disease-related γ-Secretase Dysfunction

Saori Hata; Sayaka Fujishige; Yoichi Araki; Naoko Kato; Masahiko Araseki; Masaki Nishimura; Dieter Hartmann; Paul Saftig; Falk Fahrenholz; Miyako Taniguchi; Katsuya Urakami; Hiroyasu Akatsu; Ralph N. Martins; Kazuo Yamamoto; Masahiro Maeda; Tohru Yamamoto; Tadashi Nakaya; Sam Gandy; Toshiharu Suzuki

Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alcα, Alcβ, and Alcγ. The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP α-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent γ-secretase complex, thereby generating “APP p3-like” and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alcα, p3-Alcβ, and p3-Alcγ, whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor β-amyloid species Aβ42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alcα, p3-Alcβ, and p3-Alcγ were not equivalent, suggesting that one type of γ-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect γ-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.


Molecular Biology of the Cell | 2014

Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport.

Kyoko Chiba; Masahiko Araseki; Keisuke Nozawa; Keiko Furukori; Yoichi Araki; Takahide Matsushima; Tadashi Nakaya; Saori Hata; Yuhki Saito; Seiichi Uchida; Yasushi Okada; Angus C. Nairn; Roger J. Davis; Tohru Yamamoto; Masataka Kinjo; Hidenori Taru; Toshiharu Suzuki

APP associates with kinesin-1 via JIP1. In JIP1-decicient neurons, the fast velocity and high frequency of anterograde transport of APP cargo are impaired to reduced velocity and lower frequency, respectively. Interaction of JIP1 with KLC via two novel elements in JIP1 plays an important role in efficient APP axonal transport.


Journal of Biological Chemistry | 2012

Membrane-microdomain Localization of Amyloid β-Precursor Protein (APP) C-terminal Fragments is Regulated by Phosphorylation of the Cytoplasmic Thr668 Residue

Takahide Matsushima; Yuhki Saito; James I. Elliott; Kanae Iijima-Ando; Masaki Nishimura; Nobuyuki Kimura; Saori Hata; Tohru Yamamoto; Tadashi Nakaya; Toshiharu Suzuki

Background: Phosphorylation of amyloid β-precursor protein (APP) at Thr668 alters the conformation of its cytoplasmic domain. Results: Phosphorylation of APP C-terminal fragments (pCTFs) at Thr668 decreases membrane lipid binding. Conclusion: Phosphorylation at Thr668 regulates the localization of pCTFs away from γ-secretase-containing, lipid raft-like membrane microdomains. Significance: Preservation of the phosphorylation of APP CTFs at Thr668 may be a useful treatment to lower amyloid β-protein generation. Amyloid β-precursor protein (APP) is primarily cleaved by α- or β-secretase to generate membrane-bound, C-terminal fragments (CTFs). In turn, CTFs are potentially subject to a second, intramembrane cleavage by γ-secretase, which is active in a lipid raft-like membrane microdomain. Mature APP (N- and O-glycosylated APP), the actual substrate of these secretases, is phosphorylated at the cytoplasmic residue Thr668 and this phosphorylation changes the overall conformation of the cytoplasmic domain of APP. We found that phosphorylated and nonphosphorylated CTFs exist equally in mouse brain and are kinetically equivalent as substrates for γ-secretase, in vitro. However, in vivo, the level of the phosphorylated APP intracellular domain peptide (pAICD) generated by γ-cleavage of CTFs was very low when compared with the level of nonphosphorylated AICD (nAICD). Phosphorylated CTFs (pCTFs), rather than nonphosphorylated CTFs (nCTFs), were preferentially located outside of detergent-resistant, lipid raft-like membrane microdomains. The APP cytoplasmic domain peptide (APP(648–695)) with Thr(P)668 did not associate with liposomes composed of membrane lipids from mouse brain to which the nonphosphorylated peptide preferentially bound. In addition, APP lacking the C-terminal 8 amino acids (APP-ΔC8), which are essential for membrane association, decreased Aβ generation in N2a cells. These observations suggest that the pCTFs and CTFΔC8 are relatively movable within the membrane, whereas the nCTFs are susceptible to being anchored into the membrane, an interaction made available as a consequence of not being phosphorylated. By this mechanism, nCTFs can be preferentially captured and cleaved by γ-secretase. Preservation of the phosphorylated state of APP-CTFs may be a potential treatment to lower the generation of Aβ in Alzheimer disease.


Journal of Biological Chemistry | 2016

Alternative Selection of β-Site APP-Cleaving Enzyme 1 (BACE1) Cleavage Sites in Amyloid β-Protein Precursor (APP) Harboring Protective and Pathogenic Mutations within the Aβ Sequence.

Ayano Kimura; Saori Hata; Toshiharu Suzuki

β-Site APP-cleaving enzyme 1 (BACE1) cleaves amyloid β-protein precursor (APP) at the bond between Met671 and Asp672 (β-site) to generate the carboxyl-terminal fragment (CTFβ/C99). BACE1 also cleaves APP at another bond between Thr681 and Gln682 (β′-site), yielding CTFβ′/C89. Cleavage of CTFβ/C99 by γ-secretase generates Aβ(1-XX), whereas cleavage of CTFβ′/C89 generates Aβ(11-XX). Thus, β′-site cleavage by BACE1 is amyloidolytic rather than amyloidogenic. β′ cleavage of mouse APP is more common than the corresponding cleavage of human APP. We found that the H684R substitution within human Aβ, which replaces the histidine in the human protein with the arginine found at the corresponding position in mouse, facilitated β′ cleavage irrespective of the species origin of BACE1, thereby significantly increasing the level of Aβ(11-XX) and decreasing the level of Aβ(1-XX). Thus, amino acid substitutions within the Aβ sequence influenced the selectivity of alternative β- or β′-site cleavage of APP by BACE1. In familial Alzheimers disease (FAD), the APP gene harbors pathogenic variations such as the Swedish (K670N/M671L), Leuven (E682K), and A673V mutations, all of which decrease Aβ(11–40) generation, whereas the protective Icelandic mutation (A673T) increases generation of Aβ(11–40). Thus, A673T promotes β′ cleavage of APP and protects subjects against AD. In addition, CTFβ/C99 was cleaved by excess BACE1 activity to generate CTFβ′/C89, followed by Aβ(11–40), even if APP harbored pathogenic mutations. The resultant Aβ(11–40) was more metabolically labile in vivo than Aβ(1–40). Our analysis suggests that some FAD mutations in APP are amyloidogenic and/or amyloidolytic via selection of alternative BACE1 cleavage sites.


PLOS ONE | 2012

Constitutive Cleavage of the Single-Pass Transmembrane Protein Alcadeinα Prevents Aberrant Peripheral Retention of Kinesin-1

Chiaki Maruta; Yuhki Saito; Saori Hata; Naoya Gotoh; Toshiharu Suzuki; Tohru Yamamoto

Various membrane proteins are shed by proteinases, constitutively and/or when stimulated by external signals. While the physiological significance of external signal-induced cleavages has been intensely investigated, relatively little is known about the function of constitutive cleavages. Alcadeinα (Alcα; also called Calsyntenin-1) is an evolutionarily conserved type I single-pass transmembrane protein that binds to kinesin-1 light chain (KLC) to activate kinesin-1s transport of Alcα-containing vesicles. We found that Alcα was constitutively and efficiently cleaved to liberate its ectodomain into the extracellular space, and that full-length Alcα protein was rarely detected on the cell surface. The secretion efficiency of the ectodomain was unaltered by a mutation that both abolished Alcαs KLC-binding activity and attenuated its peripheral transport, suggesting that Alcαs cleavage occurred, at least partly, en route to the cell surface. We further demonstrated that uncleavable mutant Alcα proteins readily accumulated on the cell surface and induced aberrant peripheral recruitment of KLC1 and kinesin heavy chain. Our observations suggest that Alcα is efficiently processed in part to minimize the inappropriate peripheral retention of kinesin-1. This role might exemplify the functional relevance of the constitutive cleavage of single-pass transmembrane proteins.


Journal of Biological Chemistry | 2015

Cytoplasmic Fragment of Alcadein α Generated by Regulated Intramembrane Proteolysis Enhances Amyloid β-Protein Precursor (APP) Transport into the Late Secretory Pathway and Facilitates APP Cleavage

Norio Takei; Yuriko Sobu; Ayano Kimura; Satomi Urano; Yi Piao; Yoichi Araki; Hidenori Taru; Tohru Yamamoto; Saori Hata; Tadashi Nakaya; Toshiharu Suzuki

Background: Alcadein α (Alcα) forms a ternary complex with APP and X11L. Results: Transport into the nerve terminus and metabolism of APP were facilitated in Alcα CTF transgenic mice, along with an increase in Aβ. Conclusion: Alcα ICD, a product of γ-secretase cleavage of Alcα CTF, enhanced APP trafficking from the ternary complex into a late secretory pathway. Significance: Novel function of Alcadein α results from regulated intramembrane proteolysis. The neural type I membrane protein Alcadein α (Alcα), is primarily cleaved by amyloid β-protein precursor (APP) α-secretase to generate a membrane-associated carboxyl-terminal fragment (Alcα CTF), which is further cleaved by γ-secretase to secrete p3-Alcα peptides and generate an intracellular cytoplasmic domain fragment (Alcα ICD) in the late secretory pathway. By association with the neural adaptor protein X11L (X11-like), Alcα and APP form a ternary complex that suppresses the cleavage of both Alcα and APP by regulating the transport of these membrane proteins into the late secretory pathway where secretases are active. However, it has not been revealed how Alcα and APP are directed from the ternary complex formed largely in the Golgi into the late secretory pathway to reach a nerve terminus. Using a novel transgenic mouse line expressing excess amounts of human Alcα CTF (hAlcα CTF) in neurons, we found that expression of hAlcα CTF induced excess production of hAlcα ICD, which facilitated APP transport into the nerve terminus and enhanced APP metabolism, including Aβ generation. In vitro cell studies also demonstrated that excess expression of Alcα ICD released both APP and Alcα from the ternary complex. These results indicate that regulated intramembrane proteolysis of Alcα by γ-secretase regulates APP trafficking and the production of Aβ in vivo.


PLOS ONE | 2013

Mechanism of Intramembrane Cleavage of Alcadeins by γ-Secretase

Yi Piao; Ayano Kimura; Satomi Urano; Yuhki Saito; Hidenori Taru; Tohru Yamamoto; Saori Hata; Toshiharu Suzuki

Background Alcadein proteins (Alcs; Alcα, Alcβand Alcγ) are predominantly expressed in neurons, as is Alzheimers β-amyloid (Aβ) precursor protein (APP). Both Alcs and APP are cleaved by primary α- or β-secretase to generate membrane-associated C-terminal fragments (CTFs). Alc CTFs are further cleaved by γ-secretase to secrete p3-Alc peptide along with the release of intracellular domain fragment (Alc ICD) from the membrane. In the case of APP, APP CTFβ is initially cleaved at the ε-site to release the intracellular domain fragment (AICD) and consequently the γ-site is determined, by which Aβ generates. The initial ε-site is thought to define the final γ-site position, which determines whether Aβ40/43 or Aβ42 is generated. However, initial intracellular ε-cleavage sites of Alc CTF to generate Alc ICD and the molecular mechanism that final γ-site position is determined remains unclear in Alcs. Methodology Using HEK293 cells expressing Alcs plus presenilin 1 (PS1, a catalytic unit of γ-secretase) and the membrane fractions of these cells, the generation of p3-Alc possessing C-terminal γ-cleavage site and Alc ICD possessing N-terminal ε-cleavage site were analysed with MALDI-TOF/MS. We determined the initial ε-site position of all Alcα, Alcβ and Alcγ, and analyzed the relationship between the initially determined ε-site position and the final γ-cleavage position. Conclusions The initial ε-site position does not always determine the final γ-cleavage position in Alcs, which differed from APP. No additional γ-cleavage sites are generated from artificial/non-physiological positions of ε-cleavage for Alcs, while the artificial ε-cleavage positions can influence in selection of physiological γ-site positions. Because alteration of γ-secretase activity is thought to be a pathogenesis of sporadic Alzheimers disease, Alcs are useful and sensitive substrate to detect the altered cleavage of substrates by γ-secretase, which may be induced by malfunction of γ-secretase itself or changes of membrane environment for enzymatic reaction.


Journal of Biological Chemistry | 2014

Cytoplasmic Fragment of Alcadeinα Generated by Regulated Intramembrane Proteolysis Enhances APP Transport into the Late-Secretory Pathway and Facilitates APP Cleavage

Norio Takei; Yuriko Sobu; Ayano Kimura; Satomi Urano; Yi Piao; Yoichi Araki; Hidenori Taru; Tohru Yamamoto; Saori Hata; Tadashi Nakaya; Toshiharu Suzuki

Background: Alcadein α (Alcα) forms a ternary complex with APP and X11L. Results: Transport into the nerve terminus and metabolism of APP were facilitated in Alcα CTF transgenic mice, along with an increase in Aβ. Conclusion: Alcα ICD, a product of γ-secretase cleavage of Alcα CTF, enhanced APP trafficking from the ternary complex into a late secretory pathway. Significance: Novel function of Alcadein α results from regulated intramembrane proteolysis. The neural type I membrane protein Alcadein α (Alcα), is primarily cleaved by amyloid β-protein precursor (APP) α-secretase to generate a membrane-associated carboxyl-terminal fragment (Alcα CTF), which is further cleaved by γ-secretase to secrete p3-Alcα peptides and generate an intracellular cytoplasmic domain fragment (Alcα ICD) in the late secretory pathway. By association with the neural adaptor protein X11L (X11-like), Alcα and APP form a ternary complex that suppresses the cleavage of both Alcα and APP by regulating the transport of these membrane proteins into the late secretory pathway where secretases are active. However, it has not been revealed how Alcα and APP are directed from the ternary complex formed largely in the Golgi into the late secretory pathway to reach a nerve terminus. Using a novel transgenic mouse line expressing excess amounts of human Alcα CTF (hAlcα CTF) in neurons, we found that expression of hAlcα CTF induced excess production of hAlcα ICD, which facilitated APP transport into the nerve terminus and enhanced APP metabolism, including Aβ generation. In vitro cell studies also demonstrated that excess expression of Alcα ICD released both APP and Alcα from the ternary complex. These results indicate that regulated intramembrane proteolysis of Alcα by γ-secretase regulates APP trafficking and the production of Aβ in vivo.


Molecular Neurodegeneration | 2012

Multiple γ-secretase product peptides are coordinately increased in concentration in the cerebrospinal fluid of a subpopulation of sporadic Alzheimer’s disease subjects

Saori Hata; Miyako Taniguchi; Yi Piao; Takeshi Ikeuchi; Anne M. Fagan; David M. Holtzman; Randall J. Bateman; Hamid R. Sohrabi; Ralph N. Martins; Sam Gandy; Katsuya Urakami; Toshiharu Suzuki

BackgroundAlcadeinα (Alcα) is a neuronal membrane protein that colocalizes with the Alzheimers amyloid-β precursor protein (APP). Successive cleavage of APP by β- and γ-secretases generates the aggregatable amyloid-β peptide (Aβ), while cleavage of APP or Alcα by α- and γ-secretases generates non-aggregatable p3 or p3-Alcα peptides. Aβ and p3-Alcα can be recovered from human cerebrospinal fluid (CSF). We have previously reported alternative processing of APP and Alcα in the CSF of some patients with sporadic mild cognitive impairment (MCI) and AD (SAD).ResultsUsing the sandwich enzyme-linked immunosorbent assay (ELISA) system that detects total p3-Alcα, we determined levels of total p3-Alcα in CSF from subjects in one of four diagnostic categories (elderly controls, MCI, SAD, or other neurological disease) derived from three independent cohorts. Levels of Aβ40 correlated with levels of total p3-Alcα in all cohorts.ConclusionsWe confirm that Aβ40 is the most abundant Aβ species, and we propose a model in which CSF p3-Alcα can serve as a either (1) a nonaggregatable surrogate marker for γ-secretase activity; (2) as a marker for clearance of transmembrane domain peptides derived from integral protein catabolism; or (3) both. We propose the specification of an MCI/SAD endophenotype characterized by co-elevation of levels of both CSF p3-Alcα and Aβ40, and we propose that subjects in this category might be especially responsive to therapeutics aimed at modulation of γ-secretase function and/or transmembrane domain peptide clearance. These peptides may also be used to monitor the efficacy of therapeutics that target these steps in Aβ metabolis


Nutritional Neuroscience | 2017

Facilitation of brain mitochondrial activity by 5-aminolevulinic acid in a mouse model of Alzheimer's disease.

Chiori Omori; Rika Motodate; Yuzuha Shiraki; Kyoko Chiba; Yuriko Sobu; Ayano Kimura; Tadashi Nakaya; Hikaru Kondo; Satoshi Kurumiya; Toru Tanaka; Kazuo Yamamoto; Motowo Nakajima; Toshiharu Suzuki; Saori Hata

The activities of mitochondrial enzymes, which are essential for neural function, decline with age and in age-related disease. In particular, the activity of cytochrome c oxidase (COX/complex IV) decreases in patients with Alzheimers disease (AD). COX, a mitochondrial inner membrane protein complex that contains heme, plays an essential role in the electron transport chain that generates ATP. Heme synthesis begins with 5-aminolevulinic acid (5-ALA) in mitochondria. 5-ALA synthetase is the rate-limiting enzyme in heme synthesis, suggesting that supplementation with 5-ALA might help preserve mitochondrial activity in the aged brain. We administered a diet containing 5-ALA to triple-transgenic AD (3xTg-AD) model mice for 6 months, starting at 3 months of age. COX activity and protein expression, as well as mitochondrial membrane potential, were significantly higher in brains of 5-ALA-fed mice than in controls. Synaptotagmin protein levels were also significantly higher in 5-ALA-fed mice, suggesting improved preservation of synapses. Although brain Aβ levels tended to decrease in 5-ALA-fed mice, we observed no other significant changes in other biochemical and pathological hallmarks of AD. Nevertheless, our study suggests that daily oral administration of 5-ALA could preserve mitochondrial enzyme activities in the brains of aged individuals, thereby contributing to the preservation of neural activity.

Collaboration


Dive into the Saori Hata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge