Saori Nishio
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saori Nishio.
Journal of The American Society of Nephrology | 2011
Sik Lee; Sarah C. Huen; Hitoshi Nishio; Saori Nishio; Heung Kyu Lee; Bum-Soon Choi; Christiana Ruhrberg; Lloyd G. Cantley
The ischemically injured kidney undergoes tubular cell necrosis and apoptosis, accompanied by an interstitial inflammatory cell infiltrate. In this study, we show that iNos-positive proinflammatory (M1) macrophages are recruited into the kidney in the first 48 hours after ischemia/reperfusion injury, whereas arginase 1- and mannose receptor-positive, noninflammatory (M2) macrophages predominate at later time points. Furthermore, depletion of macrophages before ischemia/reperfusion diminishes kidney injury, whereas depletion at 3 to 5 days after injury slows tubular cell proliferation and repair. Infusion of Ifnγ-stimulated, bone marrow-derived macrophages into macrophage-depleted mice at the time of kidney reperfusion restored injury to the level seen without macrophage depletion, suggesting that proinflammatory macrophages worsen kidney damage. In contrast, the appearance of macrophages with the M2 phenotype correlated with the proliferative phase of kidney repair. In vitro studies showed that IFNγ-stimulated, proinflammatory macrophages begin to express markers of M2 macrophages when cocultured with renal tubular cells. Moreover, IL-4-stimulated macrophages with an M2 phenotype, but not IFNγ-stimulated proinflammatory macrophages, promoted renal tubular cell proliferation. Finally, tracking fluorescently labeled, IFNγ-stimulated macrophages that were injected after injury showed that inflammatory macrophages can switch to an M2 phenotype in the kidney at the onset of kidney repair. Taken together, these studies show that macrophages undergo a switch from a proinflammatory to a trophic phenotype that supports the transition from tubule injury to tubule repair.
Human Molecular Genetics | 2008
Sekiya Shibazaki; Zhiheng Yu; Saori Nishio; Xin Tian; R. Brent Thomson; Michihiro Mitobe; Angeliki Louvi; Heino Velazquez; Shuta Ishibe; Lloyd G. Cantley; Peter Igarashi; Stefan Somlo
Polycystic kidney disease (ADPKD) results from failure of the kidney to properly maintain three-dimensional structure after loss of either polycystin-1 or -2. Mice with kidney selective inactivation of Pkd1 during embryogenesis develop profound renal cystic disease and die from renal failure within 3 weeks of birth. In this model, cysts form exclusively from cells in which Cre recombinase is active, but the apparent pace of cyst expansion varies by segment and cell type. Intercalated cells do not participate in cyst expansion despite the presence of cilia up to at least postnatal day 21. Cystic segments show a persistent increase in proliferation as determined by bromodeoxyuridine (BrdU) incorporation; however, the absolute proliferative index is dependent on the underlying proliferative potential of kidney tubule cells. Components of the extracellular regulated kinase (MAPK/ERK) pathway from Ras through MEK1/2 and ERK1/2 to the effector P90(RSK) are activated in both perinatal Pkd1 and adult Pkd2 ortholgous gene disease models. The pattern of MAPK/ERK activation is focal and does not correlate with the pattern of active proliferation identified by BrdU uptake. The possibility of a causal relationship between ERK1/2 activation and cyst cell proliferation was assessed in vivo in the acute perinatal Pkd1 model of ADPKD using MEK1/2 inhibitor U0126. U0126 treatment had no effect on progression of cyst formation in this model at doses sufficient to reduce phospho-ERK1/2 in cystic kidneys. Cysts in ADPKD exhibit both increased proliferation and activation of MAPK/ERK, but cyst growth is not prevented by inhibition of ERK1/2 activation.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Vinita Takiar; Saori Nishio; Patricia Seo-Mayer; J Darwin King; Hui Li; Li Zhang; Anil Karihaloo; Kenneth R. Hallows; Stefan Somlo; Michael J. Caplan
Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD.
Nature Genetics | 2011
Sorin V. Fedeles; Xin Tian; Anna-Rachel Gallagher; Michihiro Mitobe; Saori Nishio; Seung Hun Lee; Yiqiang Cai; Lin Geng; Craig M. Crews; Stefan Somlo
Autosomal dominant polycystic liver disease results from mutations in PRKCSH or SEC63. The respective gene products, glucosidase IIβ and SEC63p, function in protein translocation and quality control pathways in the endoplasmic reticulum. Here we show that glucosidase IIβ and Sec63p are required in mice for adequate expression of a functional complex of the polycystic kidney disease gene products, polycystin-1 and polycystin-2. We find that polycystin-1 is the rate-limiting component of this complex and that there is a dose-response relationship between cystic dilation and levels of functional polycystin-1 following mutation of Prkcsh or Sec63. Reduced expression of polycystin-1 also serves to sensitize the kidney to cyst formation resulting from mutations in Pkhd1, the recessive polycystic kidney disease gene. Finally, we show that proteasome inhibition increases steady-state levels of polycystin-1 in cells lacking glucosidase IIβ and that treatment with a proteasome inhibitor reduces cystic disease in orthologous gene models of human autosomal dominant polycystic liver disease.
Journal of The American Society of Nephrology | 2010
Saori Nishio; Xin Tian; Anna-Rachel Gallagher; Zhiheng Yu; Vishal Patel; Peter Igarashi; Stefan Somlo
Polycystic kidney disease (PKD) can arise from either developmental or postdevelopmental processes. Recessive PKD, caused by mutations in PKHD1, is a developmental defect, whereas dominant PKD, caused by mutations in PKD1 or PKD2, occurs by a cellular recessive mechanism in mature kidneys. Oriented cell division is a feature of planar cell polarity that describes the orientation of the mitotic axes of dividing cells during development with respect to the luminal vector of the elongating nephron. In polycystic mutant mice, the loss of oriented cell division may also contribute to the pathogenesis of PKD. Here, we examined the role of oriented cell division in mouse models based on mutations in Pkd1, Pkd2, and Pkhd1. Precystic tubules after kidney-selective inactivation of either Pkd1 or Pkd2 did not lose oriented division before cystic dilation but lost oriented division after tubular dilation began. In contrast, Pkhd1(del4/del4) mice lost oriented cell division but did not develop kidney cysts. Increased intercalation of cells into the plane of the tubular epithelium maintained the normal tubular morphology in Pkhd1(del4/del4) mice, which had more cells present in transverse tubular profiles. In conclusion, loss of oriented cell division is a feature of Pkhd1 mutation and cyst formation, but it is neither sufficient to produce kidney cysts nor required to initiate cyst formation after mutation in Pkd1 or Pkd2.
Journal of Clinical Investigation | 2005
Saori Nishio; Masahiko Hatano; Michio Nagata; Shigeo Horie; Takao Koike; Takeshi Tokuhisa; Toshio Mochizuki
Autosomal dominant polycystic kidney disease (ADPKD) is the most common human monogenic genetic disorder and is characterized by progressive bilateral renal cysts and the development of renal insufficiency. The cystogenesis of ADPKD is believed to be a monoclonal proliferation of PKD-deficient (PKD(-/-)) renal tubular epithelial cells. To define the function of Pkd1, we generated chimeric mice by aggregation of Pkd1(-/-) ES cells and Pkd1(+/+) morulae from ROSA26 mice. As occurs in humans with ADPKD, these mice developed cysts in the kidney, liver, and pancreas. Surprisingly, the cyst epithelia of the kidney were composed of both Pkd1(-/-) and Pkd1(+/+) renal tubular epithelial cells in the early stages of cystogenesis. Pkd1(-/-) cyst epithelial cells changed in shape from cuboidal to flat and replaced Pkd1(+/+) cyst epithelial cells lost by JNK-mediated apoptosis in intermediate stages. In late-stage cysts, Pkd1(-/-) cells continued immortalized proliferation with downregulation of p53. These results provide a novel understanding of the cystogenesis of ADPKD patients. Furthermore, immortalized proliferation without induction of p53 was frequently observed in 3T3-type culture of mouse embryonic fibroblasts from Pkd1(-/-) mice. Thus, Pkd1 plays a role in preventing immortalized proliferation of renal tubular epithelial cells through the induction of p53 and activation of JNK.
Arthritis & Rheumatism | 2012
Daigo Nakazawa; Utano Tomaru; Akira Suzuki; Sakiko Masuda; Risa Hasegawa; Toshiaki Kobayashi; Saori Nishio; Masanori Kasahara; Akihiro Ishizu
OBJECTIVE Neutrophil extracellular traps (NETs) are composed of DNA and antimicrobial proteins, including myeloperoxidase (MPO). Recent studies have demonstrated that impaired regulation of NETs could trigger an autoimmune response. Propylthiouracil (PTU), an antithyroid drug, is associated with a risk of MPO antineutrophil cytoplasmic antibody (ANCA) production and MPO ANCA-associated vasculitis (MPO AAV). This study was undertaken to clarify the mechanism of MPO ANCA production, using the PTU-induced model of MPO AAV. METHODS NETs were induced by treating human neutrophils with phorbol myristate acetate (PMA) in vitro. We examined whether the addition of PTU influenced the NET formation induced by PMA and the degradation of NETs by DNase I, which is regarded as a regulator of NETs. Furthermore, we examined whether NETs generated by the combination of PMA and PTU induced MPO ANCA and MPO AAV in vivo in rats. RESULTS When NETs were induced by PMA with PTU using human neutrophils in vitro, abnormal conformation of NETs was observed. Interestingly, the abnormal NETs were hardly digested by DNase I. Moreover, rats immunized with the abnormal NETs, which had been induced by PMA with PTU using rat neutrophils, produced MPO ANCA and developed pulmonary capillaritis. When rats were given oral PTU with intraperitoneal injection of PMA, pauci-immune glomerulonephritis and pulmonary capillaritis occurred with MPO ANCA production in the serum. CONCLUSION Our findings indicate that abnormal conformation and impaired degradation of NETs induced by PTU are involved in the pathogenesis of PTU-induced MPO ANCA production and MPO AAV. These findings suggest that disordered NETs can be critically implicated in the pathogenesis of MPO AAV.
Journal of The American Society of Nephrology | 2014
Daigo Nakazawa; Haruki Shida; Utano Tomaru; Masaharu Yoshida; Saori Nishio; Tatsuya Atsumi; Akihiro Ishizu
Microscopic polyangiitis (MPA) is an ANCA-associated vasculitis that affects small vessels, especially renal glomeruli. We recently demonstrated that the abnormal formation and impaired degradation of neutrophil extracellular traps (NETs) may be crucially involved in the generation of myeloperoxidase (MPO)-ANCA and subsequent development of MPA. This study assessed the formation and regulation of NETs in patients with MPO-ANCA-associated MPA. Peripheral blood samples were obtained from 38 patients with MPO-ANCA-associated MPA, 23 patients with systemic lupus erythematosus (SLE), and 8 healthy controls. IgG eluted from MPO-ANCA-associated MPA sera demonstrated the highest ability to induce NETs, and this ability correlated with disease activity and paralleled ANCA affinity for MPO. Moreover, addition of recombinant human MPO to these IgG samples reduced NET induction. Additionally, MPO-ANCA-associated MPA sera exhibited lower rates of NET degradation that recovered partially upon depletion of IgG. The activity of DNase I, an important regulator of NETs, was also lower in MPO-ANCA-associated MPA and SLE sera. IgG depletion from MPO-ANCA-associated MPA sera partially restored the rate of NET degradation, and addition of DNase I synergistically enhanced this restoration. Addition of anti-MPO antibodies did not inhibit DNase I activity, and some MPO-ANCA-associated MPA sera contained anti-NET antibodies at levels not correlated with MPO-ANCA titers, suggesting the involvement of unidentified autoantibodies as well. The collective evidence suggests a vicious cycle involving MPO-ANCA and the regulation of NETs could be critically involved in the pathogenesis of MPO-ANCA-associated MPA.
FEBS Letters | 2009
Naoki Watanabe; Kentaro Hiramatsu; Rieko Miyamoto; Kaoru Yasuda; Norihiko Suzuki; Naoko Oshima; Hiroshi Kiyonari; Dai Shiba; Saori Nishio; Toshio Mochizuki; Takahilco Yokoyama; Shoichi Maruyama; Seiichi Matsuo; Yuko Wakamatsu; Hisashi Hashimoto
Glis3 is a member of the Gli‐similar subfamily. GLIS3 mutations in humans lead to neonatal diabetes, hypothyroidism, and cystic kidney disease. We generated Glis3‐deficient mice by gene‐targeting. The Glis3 −/− mice had significant increases in the basal blood sugar level during the first few days after birth. The high levels of blood sugar are attributed to a decrease in the Insulin mRNA level in the pancreas that is caused by impaired islet development and the subsequent impairment of Insulin‐producing cell formation. The pancreatic phenotypes indicate that the Glis3‐deficient mice are a model for GLIS3 mutation and diabetes mellitus in humans.
Journal of Autoimmunity | 2016
Daigo Nakazawa; Haruki Shida; Yoshihiro Kusunoki; Arina Miyoshi; Saori Nishio; Utano Tomaru; Tatsuya Atsumi; Akihiro Ishizu
Neutrophil extracellular traps (NETs) are net-like chromatin fibers decorated with antimicrobial proteins, which are released from dying neutrophils. The death of neutrophils with NET formation is called NETosis. Although NETs play important roles in the innate immunity, especially in the elimination of microbes, the extracellular release of DNA and intra-cytoplasmic/nuclear proteins can, on the other hand, result in diverse adversities to the hosts. Therefore, NETosis is adequately regulated in vivo. Currently, two mechanisms, namely DNase I-dependent digestion and phagocytosis by macrophages, have been shown as such regulatory mechanisms. In this study, we focused on the interaction of macrophages and neutrophils that underwent NETosis. Results demonstrated that macrophages displayed a phenotype-dependent response after degradation of NETs. Several hours after the interaction, M2 macrophages induced a pro-inflammatory response, while M1 macrophages underwent cell death with nuclear decondensation. This nuclear decondensation of M1 macrophages occurred in a peptidylarginine deiminase 4-dependent manner and resulted in a local release of extracellular DNA. Thereafter, M1 macrophages degraded DNA derived from themselves in a caspase-activated DNase-dependent manner resulting in the clearance of extracellular DNA within 24 h. This transient increase and subsequent clearance mechanism of extracellular DNA seems very reasonable in terms of the double-edged sword-like property of NETs. The collective findings demonstrate a novel phenotype- and time-dependent regulation of NETosis by macrophages.