Sara A. O. Cousins
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara A. O. Cousins.
Landscape Ecology | 2001
Sara A. O. Cousins
This paper explores the possibility of using non-geometric cadastral maps from the 17th and 18th century together with aerial photographs from 1945 and 1981 to analyse land-cover change in south-east Sweden. Habitats rich in plant species in the European rural landscape seem to be correlated with a long continuity of management. Accurate spatial data from historical data sources are fundamental to understand patterns of vegetation and biodiversity in the present-day landscape. However, traditional methods for rectification of non-geometric maps using corresponding points from orthophotos or modern maps are not satisfying, as internal inaccuracies will remain in the maps. This study presents a method to rectify the maps by local warping, thereby eliminating geometrical irregularities. Further, the land-cover changes were calculated and presented as transition matrices. The extent of arable fields and grasslands were analysed in relation to soil characteristics and continuity of management. The results show a dynamic relation between grassland and arable field, albeit the overall proportions remained almost the same between 17th and 18th centuries: 60% grassland to 32% arable field. The most substantial changes in land-cover were prior to 1945. Today there is 18% grasslands left in the study area, while 56% of the land-cover is arable field. Approximately 8% of present-day land-cover is semi-natural grassland 300 years of age or more. Compared to 300 years ago there is only 1% grassland left on peat and 2% on clay. In contrast, grassland covers associated with bare bedrock have been fairly stable in size. All semi-natural grasslands with a long continuity of management were situated on shallow soils, less than 50 cm depth. The major conclusions from this study are that (i) correctly rectified, old maps are very useful to address questions of land-cover changes in historical time, (ii) general trends in land use over 300 years in this hemi-boreal landscape seem to underestimate the full dynamics of land use change, and (iii) only a small proportion of the semi-natural grassland area had a 300 year continuity of management.
Landscape Ecology | 2002
Sara A. O. Cousins; Ove Eriksson
We explored patterns of plant species richness at different spatialscales in 14 habitats in a Swedish rural landscape. Effects of physicalconditions, and relationships between species richness and management historyreaching back to the 17th century were examined, using old cadastralmaps andaerial photographs. The most species-rich habitats were dry open semi-naturalgrasslands, midfield islets and road verges. Alpha diversity (species richnesswithin sites) was highest in habitats on dry substrates (excluding bedrock withsparse pines) and beta diversity (species richness among sites) was highest inmoist to wet habitats. Alpha and beta components of species richness tended tobe inversely related among habitats with similar species richness. Managementhistory influenced diversity patterns. Areas managed as grasslands in the17th and 18th century harboured more species than areasoutside the villages. We also found significant relationships between speciesrichness and soil type. Silt proved to be the most species-rich topsoil(10–20 cm) in addition to thin soils top of on green- orlimestone bedrock. The variation in species richness due to local relief orform of thesite also showed significant relationships, where flat surfaces had the highestnumber of species. In contrast, no significant relationship was found betweenspecies richness and aspect. Our study suggests that present-day diversitypatterns are much influenced by management history, and that small habitat,e.g., road verges and midfield islets, are important for maintaining speciesrichness.
Landscape Ecology | 2003
Sara A. O. Cousins; Sandra Lavorel; Ian D. Davies
Semi-natural grasslands in Sweden are threatened by land-use change and lack of management with attendant risk to their biodiversity. We present a model to explore the effects of grazing frequency and intensity on plant species persistence, and the relative effects of grassland size and pattern. We used a landscape modelling platform, LAMOS (LAndscape MOdelling Shell), to design a landscape model of vegetation dynamics incorporating the effects of local succession, dispersal and grazing disturbance. Five plant functional groups (PFG), representing various combinations of persistence and dispersal character, light requirements and disturbance responses, were defined to model species dynamics. Based on old cadastral maps three different landscapes were designed representing specific time-layers, i.e., a historical (17th to 18th century), a pre-modern (1940s) and a present-day landscape. Simulations showed that a threshold was crossed when grasslands decreased in area to about 10–30% of the modelled area, and as a consequence the biomass of grassland-specific PFGs was strongly reduced. These competition sensitive groups did not persist in the model even with intense grazing in the present-day landscape, where grasslands occupy 11% of the total area. However, all grassland species would have been able to persist in the historical landscape, where grasslands occupied 59% of the total area, even without grazing. Our results suggest that continuous but low-intensity grazing is more positive for grassland PFGs than discontinuous but highly intensive grazing. This effect was particularly strong when the frequency and/or intensity of grazing dropped below a threshold of 20%. Simulations using three landscape maps designed to explore effects of further fragmentation and habitat loss showed that the spatial pattern of remaining grasslands is important for the persistence of grassland-specific PFG. The model presented here is an advance towards more realistic grazing models to explore the effects of prescribed grazing and landscape fragmentation on the persistence species or plant functional groups.
Applied Vegetation Science | 2008
Sara A. O. Cousins; Ove Eriksson
ABSTRACT Question: We asked how landscape configuration and present management influence plant species richness and abundance of habitat specialists in grasslands in a ‘modern’ (much exploited and transformed) agricultural Swedish landscape. Location: Selaön, south-eastern Sweden (59°24′ N, 17°10′ E). Methods: Present and past (150 and 50 years ago) landscape pattern was analysed in a 25 km2 area. Species richness was investigated in 63 different grassland patches; grazed and abandoned semi-natural grasslands, and grazed ex-arable fields. Influence of landscape variables; area, past and present grassland connectivity, present management on total species richness, density and abundance of 25 grassland specialists was analysed. Results: Semi-natural grasslands (permanent unfertilised pastures or meadows formed by traditional agricultural methods) had declined from 60% 150 years ago to 5% today. There was a significant decline in species richness and density in abandoned semi-natural grasslands. Total species richness was influenced by present management, size and connectivity to present and past grassland pattern. Landscape variables did not influence species density in grazed semi-natural grassland suggesting that maintained grazing management makes grassland patches independent of landscape context. The abundance of 16 grassland specialists was mainly influenced by management and to some extent also by landscape variables. Conclusion: Although species richness pattern reflect management and to some extent landscape variables, the response of individual species may be idiosyncratic. The historical signal from past landscapes is weak on present-day species richness in highly transformed, agricultural landscapes. Generalizations of historical legacies on species diversity in grasslands should consider also highly transformed landscapes and not only landscapes with a high amount of diversity hotspots left. Nomenclature: Lid & Lid (2005).
Environment and History | 2006
Anna Dahlström; Sara A. O. Cousins; Ove Eriksson
The traditional agriculture in Europe favoured numerous plant and animal species that are presently declining. Integrated studies based on various sources are needed in order to unravel the complex ...
Landscape and Urban Planning | 1998
Sara A. O. Cousins; Margareta Ihse
In this paper, we present a method for base-line mapping of biotope and landscape elements in the rural Swedish agricultural landscape. The overall goal is to elaborate a classification system for ...
Landscape and Urban Planning | 2002
Sara A. O. Cousins; Åsa Eriksson; Daniel Franzen
Past landscape characteristics were reconstructed in Nynas, south-eastern Sweden, using geographical and archaeological data together with pollen stratigraphy and an existing shore displacement mod ...
AMBIO: A Journal of the Human Environment | 2015
Alistair G. Auffret; Jan Plue; Sara A. O. Cousins
Connectivity is key for understanding how ecological systems respond to the challenges of land-use change and habitat fragmentation. Structural and functional connectivity are both established concepts in ecology, but the temporal component of connectivity deserves more attention. Whereas functional connectivity is often associated with spatial patterns (spatial functional connectivity), temporal functional connectivity relates to the persistence of organisms in time, in the same place. Both temporal and spatial processes determine biodiversity responses to changes in landscape structure, and it is therefore necessary that all aspects of connectivity are considered together. In this perspective, we use a case study to outline why we believe that both the spatial and temporal components of functional connectivity are important for understanding biodiversity patterns in the present-day landscape, and how they can also help us to make better-informed decisions about conserving and restoring landscapes and improving resilience to future change.
Journal of Environmental Management | 2009
Regina Lindborg; Marie Stenseke; Sara A. O. Cousins; Jan Bengtsson; Åke Berg; Tomas Gustafsson; N. Erik Sjödin; Ove Eriksson
Agriculture is the major land use at a global scale. In addition to food production, multifunctionality of landscapes, including values and ecosystem services like biodiversity, recreation and culture, is now focus for management. This study explores how a scenario approach, involving different stakeholders, may help to improve landscape management for biodiversity conservation. Local farmers and executives at the County Administrative Board were invited to discuss rural development and conditions for farmland biodiversity in two Swedish landscapes. The potential biodiversity for three future land use scenarios for the two landscapes was discussed: nature conservation, outdoor recreation and energy production, and compared with current and historical landscapes in each region. Analyses of habitat areas, connectedness and landscape diversity suggested that the energy and recreation scenarios had a negative impact on farmland biodiversity, whereas the nature conservation scenario, the current and historically reconstructed landscapes had a higher potential for biodiversity. The farmers appreciated the nature conservation scenario, but also the energy production scenario and they highlighted the need of increased subsidies for management of biodiversity. The farmers in the high production area were less interested in nature quality per se. The executives had similar opinions as the farmers, but disagreed on the advantages with energy production, as this would be in conflict with the high biodiversity and recreational values. The local physical and socio-economical conditions differ between landscapes and potentially shaped the stakeholders emotional attachment to the local environment, their opinions and decisions on how to manage the land. We stress the importance of incorporating local knowledge, visions and regional prerequisites for different land uses in conservation, since site and landscape specific planning for biodiversity together with a flexible subsidy system are necessary to reach the conservation goals within EU.
Plant Biology | 2013
Zuzana Münzbergová; Sara A. O. Cousins; Tomáš Herben; I. Plačková; Mikael Mildén; Johan Ehrlén
Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale.