Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara A. Orsi is active.

Publication


Featured researches published by Sara A. Orsi.


PLOS ONE | 2010

Valproate Administered after Traumatic Brain Injury Provides Neuroprotection and Improves Cognitive Function in Rats

Pramod K. Dash; Sara A. Orsi; Min Zhang; Raymond J. Grill; Shibani Pati; Jing Zhao; Anthony N. Moore

Background Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies. Methodology/Principal Findings Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered. Conclusion/Significance Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.


The Journal of Neuroscience | 2006

Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-mammalian target of rapamycin pathway

Pramod K. Dash; Sara A. Orsi; Anthony N. Moore

The tuberous sclerosis complex–mammalian target of rapamycin (TSC–mTOR) cascade integrates growth factor and nutritional signals to regulate the synthesis of specific proteins. Because both growth factor signaling and glucose have been implicated in memory formation, we questioned whether mTOR activity is required for long-term spatial memory formation and whether this cascade is involved in the memory-augmenting effect of centrally applied glucose. To test our hypothesis, we directly administered rapamycin (an inhibitor of mTOR), glucose, 5-aminoimidazole-4-carboxamide-1β-4-ribonucleoside (AICAR; an activator of AMP kinase), or glucose plus rapamycin into the dorsal hippocampus after we trained rats in the Morris water maze task. The results from these studies indicate that glucose enhances, whereas AICAR and rapamycin both impair, long-term spatial memory. Furthermore, the memory-impairing effect of targeted rapamycin administration could not be overcome by coadministration of glucose. Consistent with these behavioral results, biochemical analysis revealed that glucose and AICAR had opposing influences on the activation of the TSC–mTOR cascade, as indicated by the phosphorylation of ribosomal S6 kinase (S6K) and 4E binding protein 1 (4EBP1), targets of mTOR. Together, these findings suggest that memory formation requires the mTOR cascade and that the memory-enhancing effect of glucose involves its ability to activate this pathway.


Neuroscience Letters | 2009

Sulforaphane improves cognitive function administered following traumatic brain injury.

Pramod K. Dash; Jing Zhao; Sara A. Orsi; Min Zhang; Anthony N. Moore

Recent studies have shown that sulforaphane, a naturally occurring compound that is found in cruciferous vegetables, offers cellular protection in several models of brain injury. When administered following traumatic brain injury (TBI), sulforaphane has been demonstrated to attenuate blood-brain barrier permeability and reduce cerebral edema. These beneficial effects of sulforaphane have been shown to involve induction of a group of cytoprotective, Nrf2-driven genes, whose protein products include free radical scavenging and detoxifying enzymes. However, the influence of sulforaphane on post-injury cognitive deficits has not been examined. In this study, we examined if sulforaphane, when administered following cortical impact injury, can improve the performance of rats tested in hippocampal- and prefrontal cortex-dependent tasks. Our results indicate that sulforaphane treatment improves performance in the Morris water maze task (as indicated by decreased latencies during learning and platform localization during a probe trial) and reduces working memory dysfunction (tested using the delayed match-to-place task). These behavioral improvements were only observed when the treatment was initiated 1h, but not 6h, post-injury. These studies support the use of sulforaphane in the treatment of TBI, and extend the previously observed protective effects to include enhanced cognition.


Neuroscience | 2009

Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury

Pramod K. Dash; Sara A. Orsi; Anthony N. Moore

Traumatic brain injury (TBI) induces a number of pathological events ranging from neuronal degeneration and tissue loss to impaired neuronal plasticity and neurochemical dysregulation. In rodents, exposure of brain-injured animals to environmental enrichment has been shown to be an effective means of enhancing learning and memory post-injury. Recently, it has been discovered that environmental enrichment may enhance neuronal plasticity through epigenetic changes that involve enhanced histone acetylation, a property that can be mimicked by the use of histone deactylase (HDAC) inhibitors. We therefore evaluated the consequences of the HDAC inhibitor sodium butyrate on the learning and memory of brain-injured mice. In contrast to a previous report using a mouse neurodegeneration model, sodium butyrate (1.2 g/kg daily for four weeks) did not improve learning and memory when tested after the completion of the drug treatment paradigm. In addition, sodium butyrate administration during the reported period of neurodegeneration (days 0-5) also offered no benefit. However, when administered concurrently with training in the Morris water maze task (beginning on day 14 post-injury), sodium butyrate improved learning and memory in brain-injured mice. Interestingly, when these mice were subsequently tested in an associative fear conditioning task, an improvement was observed. Taken together, our findings indicate that HDAC inhibition may mimic some of the cognitive improvements seen following enriched environment exposure, and that the improvement is observed when the treatment is carried out current with behavioral testing.


Neuroscience | 2009

Persistent working memory dysfunction following traumatic brain injury: Evidence for a time-dependent mechanism

Meg M. Hoskison; Anthony N. Moore; Bingqian Hu; Sara A. Orsi; Nobuhide Kobori; Pramod K. Dash

The prefrontal cortex is highly vulnerable to traumatic brain injury (TBI) resulting in the dysfunction of many high-level cognitive and executive functions such as planning, information processing speed, language, memory, attention, and perception. All of these processes require some degree of working memory. Interestingly, in many cases, post-injury working memory deficits can arise in the absence of overt damage to the prefrontal cortex. Recently, excess GABA-mediated inhibition of prefrontal neuronal activity has been identified as a contributor to working memory dysfunction within the first month following cortical impact injury of rats. However, it has not been examined if these working memory deficits persist, and if so, whether they remain amenable to treatment by GABA antagonism. Our findings show that working memory dysfunction, assessed using both the delay match-to-place and delayed alternation T-maze tasks, following lateral cortical impact injury persists for at least 16 weeks post-injury. These deficits were found to be no longer the direct result of excess GABA-mediated inhibition of medial prefrontal cortex neuronal activity. Golgi staining of prelimbic pyramidal neurons revealed that TBI causes a significant shortening of layers V/VI basal dendrite arbors by 4 months post-injury, as well as an increase in the density of both basal and apical spines in these neurons. These changes were not observed in animals 14 days post-injury, a time point at which administration of GABA receptor antagonists improves working memory function. Taken together, the present findings, along with previously published reports, suggest that temporal considerations must be taken into account when designing mechanism-based therapies to improve working memory function in TBI patients.


PLOS ONE | 2011

Involvement of the Glycogen Synthase Kinase-3 Signaling Pathway in TBI Pathology and Neurocognitive Outcome

Pramod K. Dash; Daniel V Johnson; Jordan D. Clark; Sara A. Orsi; Min Zhang; Jing Zhao; Raymond J. Grill; Anthony N. Moore; Shibani Pati

Background Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. Methodology/Principal Findings Using a rodent model, we found that TBI caused a rapid, but transient, increase in LRP6 phosphorylation that is followed by a modest decrease in ß-Catenin phosphorylation. Phospho-GSK-3β immunoreactivity was found to increase three days post injury, a time point at which increased Akt activity following TBI has been observed. Lithium influences several neurochemical cascades, including inhibiting GSK-3. When the efficacy of daily lithium was assessed, reduced hippocampal neuronal cell loss and learning and memory improvements were observed. These influences were partially mimicked by administration of the GSK-3-selective inhibitor SB-216763, as this drug resulted in improved motor function, but only a modest improvement in memory retention and no overt neuroprotection. Conclusion/Significance Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI.


Journal of Neurotrauma | 2013

Behavioral and Histopathological Alterations Resulting from Mild Fluid Percussion Injury

Michael J. Hylin; Sara A. Orsi; Jing Zhao; Kurt H. Bockhorst; Alec Perez; Anthony N. Moore; Pramod K. Dash

The majority of people who sustain a traumatic brain injury (TBI) have an injury that can be classified as mild (often referred to as concussion). Although head CT scans for most subjects who have sustained a mild TBI (mTBI) are negative, these persons may still suffer from neurocognitive and neurobehavioral deficits. In order to expedite pre-clinical research and develop therapies, there is a need for well-characterized animal models of mTBI that reflect the neurological, neurocognitive, and pathological changes seen in human patients. In the present study, we examined the motor, cognitive, and histopathological changes resulting from 1.0 and 1.5 atmosphere (atm) overpressure fluid percussion injury (FPI). Both 1.0 and 1.5 atm FPI injury caused transient suppression of acute neurological functions, but did not result in visible brain contusion. Animals injured with 1.0 atm FPI did not show significant motor, vestibulomotor, or learning and memory deficits. In contrast, 1.5 atm injury caused transient motor disturbances, and resulted in a significant impairment of spatial learning and short-term memory. In addition, 1.5 atm FPI caused a marked reduction in cerebral perfusion at the site of injury that lasted for several hours. Consistent with previous studies, 1.5 atm FPI did not cause visible neuronal loss in the hippocampus or in the neocortex. However, a robust inflammatory response (as indicated by enhanced GFAP and Iba1 immunoreactivity) in the corpus callosum and the thalamus was observed. Examination of fractional anisotropy color maps after diffusion tensor imaging (DTI) revealed a significant decrease of FA values in the cingulum, an area found to have increased silver impregnation, suggesting axonal injury. Increased silver impregnation was also observed in the corpus callosum, and internal and external capsules. These findings are consistent with the deficits and pathologies associated with mild TBI in humans, and support the use of mild FPI as a model to evaluate putative therapeutic options.


Experimental Neurology | 2013

Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury

Margalit Haber; Samah G. Abdel Baki; Natalia Grinkina; Rachel Irizarry; Alina Ershova; Sara A. Orsi; Raymond J. Grill; Pramod K. Dash; Peter J. Bergold

Traumatic brain injury (TBI) differs in severity from severe to mild. This study examined whether a combination of the drugs minocycline (MINO) plus N-acetylcysteine (NAC) produces behavioral and histological improvements in a mild version of the controlled cortical impact model of TBI (mCCI). Following mCCI, rats acquired an active place avoidance task by learning the location of a stationary shock zone on a rotating arena. Rats acquired this task with a training protocol using a 10-minute intertrial interval. Mildly injured rats had an apparent deficit in long-term memory since they did not acquire the task when the intertrial interval was increased to 24 h. Mildly injured rats also had an apparent deficit in set shifting since, after successfully learning one shock zone location they did not learn the location of a second shock zone. MINO plus NAC synergistically limited these behavioral deficits in long-term memory and set shifting. mCCI also produced neuroinflammation at the impact site and at distal white matter tracts including the corpus callosum. At the impact site, MINO plus NAC attenuated CD68-expressing phagocytic microglia without altering neutrophil infiltration or astrocyte activation. The drugs had no effect on astrocyte activation in the corpus callosum or hippocampus. In the corpus callosum, MINO plus NAC decreased CD68 expression yet increased overall microglial activation as measured by Iba-1. MINO plus NAC acted synergistically to increase Iba-1 expression since MINO alone suppressed expression and NAC alone had no effect. Despite the known anti-inflammatory actions of the individual drugs, MINO plus NAC appeared to modulate, rather than suppress neuroinflammation. This modulation of neuroinflammation may underlie the synergistic improvement in memory and set-shifting by the drug combination after mCCI.


Journal of Neurochemistry | 2005

Sequestration of serum response factor in the hippocampus impairs long‐term spatial memory

Pramod K. Dash; Sara A. Orsi; Anthony N. Moore

The formation of long‐term memory has been shown to require protein kinase‐mediated gene expression. One such kinase, mitogen‐activated protein kinase/extracellular signal‐regulated kinase (MAPK/ERK), can lead to the phosphorylation of serum response factor (SRF) and Elk‐1, enhancing the expression of target genes. However, a direct involvement of these transcription factors in memory storage has not been demonstrated. We have employed an oligonucleotide decoy technique to interrogate SRF and Elk‐1. Previously, it has been shown that intra‐amygdalal infusion of small double‐stranded decoy oligonucleotides for nuclear factor‐kappaB (NFkappaB) can impair long‐term memory for fear‐potentiated startle. Using this approach, we found that intra‐hippocampal infusion of NFkappaB decoy oligonucleotides also impairs long‐term spatial memory, consistent with a role for this factor in long‐term memory storage. Decoy oligonucleotides containing the binding site for SRF, as confirmed by shift‐western, did not influence memory acquisition but impaired long‐term spatial memory. Analysis of search behavior during the transfer test revealed deficits consistent with a loss of precise platform location information. In contrast, oligonucleotides with a binding site for either Elk‐1 or another target of ERK activity, SMAD3/SMAD4, did not interfere with memory formation or storage. These findings suggest that SRF‐mediated gene expression is required for long‐term spatial memory.


Learning & Memory | 2013

Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning

Michael J. Hylin; Sara A. Orsi; Anthony N. Moore; Pramod K. Dash

The perineuronal net (PNN) surrounds neurons in the central nervous system and is thought to regulate developmental plasticity. A few studies have shown an involvement of the PNN in hippocampal plasticity and memory storage in adult animals. In addition to the hippocampus, plasticity in the medial prefrontal cortex (mPFC) has been demonstrated to be critical for the storage of long-term memory, particularly memories for temporally separated events. In the present study, we examined the role of PNN in the acquisition and retention of memories for trace (in which the conditioned and unconditioned stimuli are temporally separated) and delayed (in which the conditioned and unconditioned stimuli overlap) fear conditioning in both the hippocampus and the mPFC. Consistent with a role for the hippocampus in memory storage in both delayed and trace fear conditioning, removal of hippocampal PNN disrupted contextual and trace fear memory. Disruption of the PNN in the mPFC impaired long-term trace and conditioned stimulus (CS)-elicited fear memory in the trace fear conditioning task. Interestingly, CS-elicited fear memory was also impaired when a delayed fear conditioning paradigm was used. These findings further support a role for the PNN in neural plasticity and implicate PNN-regulated plasticity in neocortical memory storage.

Collaboration


Dive into the Sara A. Orsi's collaboration.

Top Co-Authors

Avatar

Pramod K. Dash

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Anthony N. Moore

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Jing Zhao

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Michael J. Hylin

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

John B. Redell

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Min Zhang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Grill

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Shibani Pati

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrey S. Tsvetkov

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Kimberly N. Hood

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge