Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Ahlgren is active.

Publication


Featured researches published by Sara Ahlgren.


The Journal of Nuclear Medicine | 2009

Targeting of HER2-Expressing Tumors with a Site-Specifically 99mTc-Labeled Recombinant Affibody Molecule, ZHER2:2395, with C-Terminally Engineered Cysteine

Sara Ahlgren; Helena Wållberg; Thuy Tran; Charles Widström; Magnus Hjertman; Lars Abrahmsén; Dietmar Berndorff; Ludger Dinkelborg; John E. Cyr; Joachim Feldwisch; Anna Orlova; Vladimir Tolmachev

The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced 99mTc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. Methods: A C-terminal cysteine was introduced into the Affibody molecule ZHER2:342 to enable site-specific labeling with 99mTc. Two recombinant variants, His6-ZHER2:342-Cys (dissociation constant [KD], 29 pM) and ZHER2:2395-Cys, lacking a His tag (KD, 27 pM), were labeled with 99mTc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and γ-camera imaging studies were performed in mice bearing HER2-expressing xenografts. Results: 99mTc-His6-ZHER2:342-Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. 99mTc-ZHER2:2395-Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 ± 2.5 (mean ± SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 ± 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 ± 24 and 121 ± 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical γ-camera 1 h after injection of 99mTc-ZHER2:2395-Cys. Conclusion: The Affibody molecule 99mTc-ZHER2:2395-Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.


Bioconjugate Chemistry | 2008

Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules

Sara Ahlgren; Anna Orlova; Daniel Rosik; Mattias Sandström; Anna Sjöberg; Barbro Baastrup; Olof Widmark; Gunilla Fant; Joachim Feldwisch; Vladimir Tolmachev

Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.


Current Pharmaceutical Biotechnology | 2010

Radionuclide Molecular Imaging Using Affibody Molecules

Sara Ahlgren; Vladimir Tolmachev

The current way to increase efficacy of cancer therapy is the use of molecular recognition of aberrantly expressed gene products for selective treatment. However, only a fraction of the patients have tumors with a particular molecular target. Radionuclide imaging of molecular targets might help to stratify patient for cancer treatment. Affibody molecules are scaffold proteins, which can be selected for high affinity recognition of proteinaceous molecular targets. The capacity to re-fold under physiological conditions allows labeling of Affibody molecules in a broad range of pH and temperatures with preserved binding properties. Peptide synthesis or introduction of a unique cysteine enables site-specific labeling of Affibody molecules, resulting in uniform conjugates with well-defined pharmacological characteristics. The small size (7 kDa) of Affibody molecules provides rapid extravasation, rapid tumor penetration, and rapid clearance of unbound tracer from healthy organs and tissues. In combination with sub-nanomolar affinity, this results in high contrast in vivo imaging a few hours after injection. Excellent targeting has been demonstrated in pre-clinical studies with HER2-targeting Affibody molecules labeled with (99m)Tc and (111)In for single photon computed tomography (SPECT), and (18)F, (64)Cu, (124)I and (68)Ga for positron emission tomography (PET). Pilot clinical data confirm the high potential of Affibody molecules.


The Journal of Nuclear Medicine | 2010

Targeting of HER2-Expressing Tumors Using 111In-ABY-025, a Second-Generation Affibody Molecule with a Fundamentally Reengineered Scaffold

Sara Ahlgren; Anna Orlova; Helena Wållberg; Monika Hansson; Mattias Sandström; Richard Lewsley; Anders Wennborg; Lars Abrahmsén; Vladimir Tolmachev; Joachim Feldwisch

Overexpression of the human epidermal growth factor receptor type 2 (HER2) in breast carcinomas predicts response to trastuzumab therapy. Affibody molecules based on a nonimmunoglobulin scaffold have demonstrated a high potential for in vivo molecular imaging of HER2-expressing tumors. The reengineering of the molecular scaffold has led to a second generation of optimized Affibody molecules that have a surface distinctly different from the parental protein domain from staphylococcal protein A. Compared with the parental molecule, the new tracer showed a further increased melting point, stability, and overall hydrophilicity and was more amenable to chemical peptide synthesis. The goal of this study was to assess the potential effects of this extensive reengineering on HER2 targeting, using ABY-025, a DOTA-conjugated variant of the novel tracer. Methods: 111In-ABY-025 was compared with previously evaluated parent HER2-binding Affibody tracers in vitro and in vivo. The in vivo behavior was further evaluated in mice bearing SKOV-3 xenografts, rats, and cynomolgus macaques (Macaca fascicularis). Results: 111In-ABY-025 bound specifically to HER2 in vitro and in vivo. Direct comparison with the previous generation of HER2-binding tracers showed that ABY-025 retained excellent targeting properties. Rapid blood clearance was shown in mice, rats, and macaques. A highly specific tumor uptake of 16.7 ± 2.5 percentage injected activity per gram of tissue was seen at 4 h after injection. The tumor-to-blood ratio was 6.3 at 0.5 h and 88 at 4 h and increased up to 3 d after injection. γ-camera imaging of tumors was already possible at 0.5 h after injection. Furthermore, the repeated intravenous administration of ABY-025 did not induce antibody formation in rats. Conclusion: The biodistribution of 111In-ABY-025 was in remarkably good agreement with the parent tracers, despite profound reengineering of the nonbinding surface. The molecule displayed rapid blood clearance in all species investigated and excellent targeting capacity in tumor-bearing mice, leading to high tumor-to-organ-ratios and high-contrast imaging shortly after injection.


Bioconjugate Chemistry | 2010

HEHEHE-Tagged Affibody Molecule May Be Purified by IMAC, Is Conveniently Labeled with [99mTc(CO)3]+, and Shows Improved Biodistribution with Reduced Hepatic Radioactivity Accumulation

Vladimir Tolmachev; Camilla Hofström; Jennie Malmberg; Sara Ahlgren; Seyed Jalal Hosseinimehr; Mattias Sandström; Lars Abrahmsén; Anna Orlova; Torbjörn Gräslund

Affibody molecules are a class of small (ca. 7 kDa) robust scaffold proteins suitable for radionuclide molecular imaging of therapeutic targets in vivo. A hexahistidine tag at the N-terminus streamlines development of new imaging probes by enabling facile purification using immobilized metal ion affinity chromatography (IMAC), as well as convenient [⁹⁹(m)Tc(CO)₃](+)-labeling. However, previous studies in mice have demonstrated that Affibody molecules labeled by this method yield higher liver accumulation of radioactivity, compared to the same tracer lacking the hexahistidine tag and labeled by an alternative method. Two variants of the HER2-binding Affibody molecule Z(HER)₂(:)₃₄₂ were made in an attempt to create a tagged tracer that could be purified by immobilized metal affinity chromatography, yet would not result in anomalous hepatic radioactivity accumulation following labeling with [⁹⁹(m)Tc(CO)₃](+). In one construct, the hexahistidine tag was moved to the C-terminus. In the other construct, every second histidine residue in the hexahistidine tag was replaced by the more hydrophilic glutamate, resulting in a HEHEHE-tag. Both variants, denoted Z(HER)₂(:)₃₄₂-H₆ and (HE)₃-Z(HER)₂(:)₃₄₂, respectively, could be efficiently purified using IMAC and stably labeled with [⁹⁹(m)Tc(CO)₃](+) and were subsequently compared with the parental H₆-Z(HER)₂(:)₃₄₂ having an N-terminal hexahistidine tag. All three variants were demonstrated to specifically bind to HER2-expressing cells in vitro. The hepatic accumulation of radioactivity in a murine model was 2-fold lower with [⁹⁹(m)Tc(CO)₃](+)-Z(HER2:342)-H₆ compared to [⁹⁹(m)Tc(CO)₃](+)-H₆-Z(HER)₂(:)₃₄₂, and more than 10-fold lower with [⁹⁹(m)Tc(CO)₃](+)-(HE)₃-Z(HER)₂(:)₃₄₂. These differences translated into appreciably superior tumor-to-liver ratio for [⁹⁹(m)Tc(CO)₃](+)-(HE)₃-Z(HER)₂(:)₃₄₂ compared to the alternative conjugates. This information might be useful for development of other scaffold-based molecular imaging probes.


Molecular Imaging and Biology | 2010

Evaluation of the Radiocobalt-Labeled [MMA-DOTA-Cys61]-ZHER2:2395-Cys Affibody Molecule for Targeting of HER2-Expressing Tumors

Helena Wållberg; Sara Ahlgren; Charles Widström; Anna Orlova

PurposeImaging using positron emission tomography (PET) in the field of nuclear medicine is becoming increasingly important. The aim of this study was to develop a method for labeling of affibody molecules with radiocobalt for PET applications.ProceduresThe human epidermal growth factor receptors type 2 (HER2) binding affibody molecule DOTA-Z2395-C was radiolabeled with 57Co (used as a surrogate of 55Co). The binding specificity and cellular processing of the labeled compound was studied in vitro followed by in vivo characterization in normal and tumor-bearing mice. Furthermore, a comparative biodistribution study was performed with a 111In-labeled counterpart.ResultsDOTA-Z2395-C was successfully labeled with radiocobalt with nearly quantitative yield. The compound displayed good retention on cells over time and high tumor accumulation of radioactivity in animal studies. Imaging studies showed clear visualization of HER2-positive tumors. Furthermore, the radiocobalt label provided better tumor-to-organ ratios than 111In.ConclusionsRadiocobalt is a promising label for affibody molecules for future PET applications.


Nuclear Medicine and Biology | 2010

Kit formulation for 99mTc-labeling of recombinant anti-HER2 Affibody molecules with a C-terminally engineered cysteine

Sara Ahlgren; Kristofer Andersson; Vladimir Tolmachev

INTRODUCTION Molecular imaging of human epidermal growth factor receptor type 2 (HER2)-expression in malignant tumors provides potentially important information for patient management. Affibody molecules have shown to be suitable tracers for imaging applications using single photon emission computed tomography or positron emission tomography. Results from an earlier evaluation of the application of site-specific (99m)Tc-labeling of the Affibody molecule, Z(HER2:2395)-C, were favorable. METHODS As a preparation for clinical application of this tracer, we have developed and evaluated a robust single-vial freeze-dried kit, allowing labeling of the Affibody molecule, Z(HER2:2395)-C, with (99m)Tc. RESULTS The composition of the kit [containing glucoheptonate, EDTA and tin(II)-chloride], as well as the protein amount and the pertechnetate volume were optimized for a high labeling yield (>90%) and minimal presence of reduced hydrolyzed technetium colloids (<1%). The specificity to HER2 receptors, the binding competence and the stability in phosphate-buffered saline and murine serum were verified in vitro. The shelf-life was also evaluated in vitro, showing no reduction in labeling yield or binding capacity to HER2-expressing cells after over 400 days of storage of the single-vial freeze-dried kit. CONCLUSIONS Z(HER2:2395)-C labeled with (99m)Tc using the lyophilized kit was stable and resulted in a favorable biodistribution in an in vivo evaluation in normal Naval Medical Research Institute mice.


Journal of Colloid and Interface Science | 2016

Optimization of lipodisk properties by modification of the extent and density of the PEG corona

Malin Morin Zetterberg; Sara Ahlgren; Víctor Hernández; Nagma Parveen; Katarina Edwards

Lipodisks are nanosized flat, circular, phospholipid bilayers that are edge-stabilized by polyethylene glycol-conjugated lipids (PEG-lipids). Over the last decade, lipodisks stabilized with PEG of molecular weight 2000 or 5000 have been shown to hold high potential as both biomimetic membranes and drug carriers. In this study we investigate the possibilities to optimize the properties of the lipodisks, and widen their applicability, by reducing the PEG molecular weight and/or the density of the PEG corona. Results obtained by cryo-transmission electron microscopy and dynamic light scattering show that stable, well-defined lipodisks can be produced from mixtures of distearoylphosphatidylcholine (DSPC) and distearoylphosphatidylethanolamine conjugated to PEG of molecular weight 1000 (DSPE-PEG1000). Preparations based on the use of DSPE-PEG750 tend, in contrast, to be polydisperse in size and structure. By comparing immobilization of lipodisks stabilized with DSPE-PEG1000, DSPE-PEG2000, and DSPE-PEG5000 to porous and smooth silica surfaces, we show that the amount of surface bound disks can be considerably improved by the use of PEG-lipids with reduced molecular weight. Further, a modified preparation protocol that enables production of lipodisks with very low PEG-lipid content is described. The reduced PEG density, which facilitates the incorporation of externally added ligand-linked PEG-lipids, is shown to be beneficial for the production of targeting lipodisks.


RSC Advances | 2017

EGF-targeting lipodisks for specific delivery of poorly water-soluble anticancer agents to tumour cells

Sara Ahlgren; Amelie Fondell; Lars Gedda; Katarina Edwards

Concerns regarding poor aqueous solubility, high toxicity and lack of specificity impede the translation of many hydrophobic anticancer agents into safe and effective anticancer drugs. The application of colloidal drug delivery systems, and in particular the use of lipid-based nanocarriers, has been identified as a promising means to overcome these issues. PEG-stabilized lipid nanodisks (lipodisks) have lately emerged as a novel type of biocompatible, nontoxic and adaptable drug nanocarrier. In this study we have explored the potential of lipodisks as a platform for formulation and tumour targeted delivery of hydrophobic anticancer agents. Using curcumin as a model compound, we show that lipodisks can be loaded with substantial amounts of hydrophobic drugs (curcumin/lipid molar ratio 0.15). We demonstrate moreover that by deliberate choice of preparation protocols the lipodisks can be provided with relevant amounts of targeting proteins, such as epidermal growth factor (EGF). Data from in vitro cell studies verify that such EGF-decorated curcumin-loaded lipodisks are capable of EGF-receptor specific targeting of human A-431 tumour cells, and strongly suggest that the interaction between the lipodisks and the tumour cells results in receptor-mediated internalization of the disks and their cargo.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Targeting lipodisks enable selective delivery of anticancer peptides to tumor cells

Sara Ahlgren; Karin Reijmar; Katarina Edwards

Issues concerning non-specificity, degradation and hemolysis severely hamper the development of membranolytic amphiphilic peptides into safe and efficient anticancer agents. To increase the therapeutic potential, we have previously developed a strategy based on formulation of the peptides in biocompatible nanosized lipodisks. Studies using melittin as model peptide show that the proteolytic degradation and hemolytic effect of the peptide are substantially reduced upon loading in lipodisks. Here, we explored the possibilities to increase the specificity and boost the cytotoxicity of melittin to tumor cells by use of targeting lipodisk. We demonstrate that small (~20 nm) EGF-targeted lipodisks can be produced and loaded with substantial amounts of peptide (lipid/peptide molar ratio >7) by means of a simple and straightforward preparation protocol. In vitro cell studies confirm specific binding of the peptide-loaded disks to tumor cells and suggest that cellular internalization of the disks results in a significantly improved cell-killing effect.

Collaboration


Dive into the Sara Ahlgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena Wållberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lars Abrahmsén

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Sjöberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Rosik

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge