Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara B. Taylor is active.

Publication


Featured researches published by Sara B. Taylor.


Frontiers in Behavioral Neuroscience | 2010

Characterization of the Cognitive Impairments Induced by Prenatal Exposure to Stress in the Rat

Julie A. Markham; Adam R. Taylor; Sara B. Taylor; Dana B. Bell; James I. Koenig

We have previously shown that male rats exposed to gestational stress exhibit phenotypes resembling what is observed in schizophrenia, including hypersensitivity to amphetamine, blunted sensory gating, disrupted social behavior, impaired stress axis regulation, and aberrant prefrontal expression of genes involved in synaptic plasticity. Maternal psychological stress during pregnancy has been associated with adverse cognitive outcomes among children, as well as an increased risk for developing schizophrenia, which is characterized by significant cognitive deficits. We sought to characterize the long-term cognitive outcome of prenatal stress using a preclinical paradigm, which is readily amenable to the development of novel therapeutic strategies. Rats exposed to repeated variable prenatal stress during the third week of gestation were evaluated using a battery of cognitive tests, including the novel object recognition task, cued and contextual fear conditioning, the Morris water maze, and iterative versions of a paradigm in which working and reference memory for both objects and spatial locations can be assessed (the “Can Test”). Prenatally stressed males were impaired relative to controls on each of these tasks, confirming the face validity of this preclinical paradigm and extending the cognitive implications of prenatal stress exposure beyond the hippocampus. Interestingly, in experiments where both sexes were included, the performance of females was found to be less affected by prenatal stress compared to that of males. This could be related to the finding that women are less vulnerable than men to schizophrenia, and merits further investigation.


Substance Abuse and Rehabilitation | 2013

The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans.

Sara B. Taylor; Lewis Cr; Michael F. Olive

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.


Neuroscience | 2014

Chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring of the striatum

Sara B. Taylor; Julia M. Anglin; Pooja R. Paode; A.G. Riggert; M.F. Olive; Cheryl D. Conrad

Chronic stress is an established risk factor in the development of addiction. Addiction is characterized by a progressive transition from casual drug use to habitual and compulsive drug use. The ability of chronic stress to facilitate the transition to addiction may be mediated by increased engagement of the neurocircuitries underlying habitual behavior and addiction. In the present study, striatal morphology was evaluated after 2 weeks of chronic variable stress in male Sprague-Dawley rats. Dendritic complexity of medium spiny neurons was visualized and quantified with Golgi staining in the dorsolateral and dorsomedial striatum, as well as in the nucleus accumbens core and shell. In separate cohorts, the effects of chronic stress on habitual behavior and the acute locomotor response to methamphetamine were also assessed. Chronic stress resulted in increased dendritic complexity in the dorsolateral striatum and nucleus accumbens core, regions implicated in habitual behavior and addiction, while decreased complexity was found in the nucleus accumbens shell, a region critical for the initial rewarding effects of drugs of abuse. Chronic stress did not affect dendritic complexity in the dorsomedial striatum. A parallel shift toward habitual learning strategies following chronic stress was also identified. There was an initial reduction in acute locomotor response to methamphetamine, but no lasting effect as a result of chronic stress exposure. These findings suggest that chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring in the striatum.


Neuroscience | 2013

The interaction of disrupted type II neuregulin 1 and chronic adolescent stress on adult anxiety- and fear-related behaviors.

Sara B. Taylor; Adam R. Taylor; James I. Koenig

The incidence of anxiety, mood, substance abuse disorders and schizophrenia increases during adolescence. Epidemiological evidence confirms that exposure to stress during sensitive periods of development can create vulnerabilities that put genetically predisposed individuals at increased risk for psychiatric disorders. Neuregulin 1 (NRG1) is a frequently identified schizophrenia susceptibility gene that has also been associated with the psychotic features of bipolar disorder. Previously, we established that Type II NRG1 is expressed in the hypothalamic-pituitary-adrenal (HPA) axis neurocircuitry. We also found, using a line of Nrg1 hypomorphic rats (Nrg1(Tn)), that genetic disruption of Type II NRG1 results in altered HPA axis function and environmental reactivity. The present studies used the Nrg1(Tn) rats to test whether Type II NRG1 gene disruption and chronic stress exposure during adolescence interact to alter adult anxiety- and fear-related behaviors. Male and female Nrg1(Tn) and wild-type rats were exposed to chronic variable stress (CVS) during mid-adolescence and then tested for anxiety-like behavior, cued fear conditioning and basal corticosterone secretion in adulthood. The disruption of Type II NRG1 alone significantly impacts rat anxiety-related behavior by reversing normal sex-related differences and impairs the ability to acquire cued fear conditioning. Sex-specific interactions between genotype and adolescent stress also were identified such that CVS-treated wild-type females exhibited a slight reduction in anxiety-like behavior and basal corticosterone, while CVS-treated Nrg1(Tn) females exhibited a significant increase in cued fear extinction. These studies confirm the importance of Type II NRG1 in anxiety and fear behaviors and point to adolescence as a time when stressful experiences can shape adult behavior and HPA axis function.


Behavioural Brain Research | 2015

Sex-specific impairment and recovery of spatial learning following the end of chronic unpredictable restraint stress: Potential relevance of limbic GAD

J. Bryce Ortiz; Sara B. Taylor; Ann N. Hoffman; Alyssa N. Campbell; Louis R. Lucas; Cheryl D. Conrad

Chronic restraint stress alters hippocampal-dependent spatial learning and memory in a sex-dependent manner, impairing spatial performance in male rats and leaving intact or facilitating performance in female rats. Moreover, these stress-induced spatial memory deficits improve following post-stress recovery in males. The current study examined whether restraint administered in an unpredictable manner would eliminate these sex differences and impact a post-stress period on spatial ability and limbic glutamic acid decarboxylase (GAD65) expression. Male (n=30) and female (n=30) adult Sprague-Dawley rats were assigned to non-stressed control (Con), chronic stress (Str-Imm), or chronic stress given a post-stress recovery period (Str-Rec). Stressed rats were unpredictably restrained for 21 days using daily non-repeated combinations of physical context, duration, and time of day. Then, all rats were tested on the radial arm water maze (RAWM) for 2 days and given one retention trial on the third day, with brains removed 30min later to assess GAD65 mRNA. In Str-Imm males, deficits occurred on day 1 of RAWM acquisition, an impairment that was not evident in the Str-Rec group. In contrast, females did not show significant outcomes following chronic stress or post-stress recovery. In males, amygdalar GAD65 expression negatively correlated with RAWM performance on day 1. In females, hippocampal CA1 GAD65 positively correlated with RAWM performance on day 1. These results demonstrate that GABAergic function may contribute to the sex differences observed following chronic stress. Furthermore, unpredictable restraint and a recovery period failed to eliminate the sex differences on spatial learning and memory.


Behavioural Brain Research | 2011

Sex-specific neuroendocrine and behavioral phenotypes in hypomorphic Type II Neuregulin 1 rats

Sara B. Taylor; Julie A. Markham; Adam R. Taylor; Brooke Z. Kanaskie; James I. Koenig

Neuregulin 1 (NRG1) is an important growth factor involved in the development and plasticity of the central nervous system. Since its identification as a susceptibility gene for schizophrenia, several transgenic mouse models have been employed to elucidate the role NRG1 may play in the pathogenesis of psychiatric disease. Unfortunately very few studies have included females, despite the fact that some work suggests that the consequences of disrupted NRG1 expression may be sex-specific. Here, we used Nrg1 hypomorphic (Nrg1(Tn)) Fischer rats to demonstrate sex-specific changes in neuroendocrine and behavioral phenotypes as a consequence of reduced Type II NRG1 expression. We have previously shown that male Nrg1(Tn) rats have increased basal corticosterone levels, and fail to habituate to an open field despite normal overall levels of locomotor activity. The current studies show that, in contrast, female Nrg1(Tn) rats exhibit enhanced suppression of corticosterone levels following an acute stress, reduced locomotor activity, and enhanced habituation to novel environments. Furthermore, we also show that female, but not male, Nrg1(Tn) rats have impaired prepulse inhibition. Finally, we provide evidence that sex-specific changes are not likely attributable to major disruptions in the hypothalamic-pituitary-gonadal axis, as measures of pubertal onset, estrous cyclicity, and reproductive capacity were unaltered in female Nrg1(Tn) rats. Our results provide further support for both the involvement of NRG1 in the control of hypothalamic-pituitary-adrenal axis function and the sex-specific nature of this relationship.


Journal of Drug and Alcohol Research | 2016

Sensitization to the motor stimulant effects of 3,4-methylenedioxypyrovalerone (MDPV) and cross-sensitization to methamphetamine in rats

Lucas R. Watterson; Peter R. Kufahl; Sara B. Taylor; Natali E. Nemirovsky; M. Foster Olive

BACKGROUND In recent years, there has been a dramatic increase in abuse of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV), often in combination with other illicit stimulants. PURPOSE We sought to determine if repeated exposure to MDPV would produce sensitization to the motor stimulant effects of the drug, and whether cross-sensitization would develop with the stimulant effects of methamphetamine (METH). STUDY DESIGN Male Sprague-Dawley rats were administered MDPV (1 or 5 mg/kg) or saline once daily for 5 days at 24 hour intervals, or were administered MDPV (1 mg/kg) or saline once daily for 5 days at 48 hour intervals. For cross-sensitization experiments, rats were administered METH (1 mg/kg) or MDPV (1 or 5 mg/kg) once daily for 5 days at 48 hour intervals, and following a 5 day incubation period, were given an acute challenge injection of either MDPV (0.5 mg/kg) or METH (0.5 mg/kg), respectively. RESULTS Rats repeatedly administered MDPV (1 mg/kg) every 48 hours, but not every 24 hours, demonstrated increased motor activity when given either a subsequent challenge of MDPV (0.5 mg/kg i.p.) or METH (0.5 mg/kg), indicating the development of behavioral sensitization and cross-sensitization, respectively. Moreover, rats repeatedly administered METH (1 mg/kg) every 48 hours did not exhibit cross-sensitization to the motor stimulating effects of a subsequent challenge with MDPV (0.5 mg/kg). CONCLUSION These results suggest that specific patterns of MDPV administration may lead to lasting changes in behavioral responses to subsequent METH exposure.


Neuroscience Letters | 2012

The involvement of Type II Neuregulin-1 in rat visuospatial learning and memory

Adam R. Taylor; Sara B. Taylor; James I. Koenig

The cognitive deficits observed in schizophrenia are considered a core feature of the disease. Neuregulin-1 is a risk gene for schizophrenia that is involved in many neurodevelopmental and synaptic plasticity-related processes relevant to schizophrenia. Here, we have utilized a rat model (Nrg1(Tn)), which is hypomorphic for the neuregulin-1 (Nrg1) gene, to test whether reduced Type II NRG1 in the rat brain leads to cognitive deficits relevant to schizophrenia. Wild-type and homozygous Nrg1(Tn) male rats were tested in memory tasks that evaluated spatial memory (Morris water maze) and visuospatial working and reference memory (Can Test). Nrg1(Tn) rats were not impaired on the Morris water maze, but did show a deficit in the appetitive visuospatial discrimination test. Nrg1(Tn) rats committed more reference and working memory errors in this test. These results indicate that decreased Type II NRG1 in the brain may lead to deficits in visuospatial learning and memory.


Cns & Neurological Disorders-drug Targets | 2015

mGluR5 Positive and Negative Allosteric Modulators Differentially Affect Dendritic Spine Density and Morphology in the Prefrontal Cortex.

Amber L. LaCrosse; Sara B. Taylor; Natali E. Nemirovsky; Justin T. Gass; Michael F. Olive

Positive and negative allosteric modulators (PAMs and NAMs, respectively) of type 5 metabotropic glutamate receptors (mGluR5) are currently being investigated as novel treatments for neuropsychiatric diseases including drug addiction, schizophrenia, and Fragile X syndrome. However, only a handful of studies have examined the effects of mGluR5 PAMs or NAMs on the structural plasticity of dendritic spines in otherwise naïve animals, particularly in brain regions mediating executive function. In the present study, we assessed dendritic spine density and morphology in pyramidal cells of the medial prefrontal cortex (mPFC) after repeated administration of either the prototypical mGluR5 PAM 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5- yl)benzamide (CDPPB, 20 mg/kg), the clinically utilized mGluR5 NAM 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4Himidazol- 2-yl)urea (fenobam, 20 mg/kg), or vehicle in male Sprague-Dawley rats. Following once daily treatment for 10 consecutive days, coronal brain sections containing the mPFC underwent diolistic labeling and 3D image analysis of dendritic spines. Compared to vehicle treated animals, rats administered fenobam exhibited significant increases in dendritic spine density and the overall frequency of spines with small (<0.2 μm) head diameters, decreases in frequency of spines with medium (0.2-0.4 μm) head diameters, and had no changes in frequency of spines with large head diameters (>0.4 μm). Administration of CDPPB had no discernable effects on dendritic spine density or morphology, and neither CDPPB nor fenobam had any effect on spine length or volume. We conclude that mGluR5 PAMs and NAMs differentially affect mPFC dendritic spine structural plasticity in otherwise naïve animals, and additional studies assessing their effects in combination with cognitive or behavioral tasks are needed.


Neuropharmacology | 2016

Chronic variable stress and intravenous methamphetamine self-administration - Role of individual differences in behavioral and physiological reactivity to novelty.

Sara B. Taylor; Lucas R. Watterson; Peter R. Kufahl; Natali E. Nemirovsky; S.E. Tomek; C.D. Conrad; Michael F. Olive

Stress is a contributing factor to the development and maintenance of addiction in humans. However, few studies have shown that stress potentiates the rewarding and/or reinforcing effects of methamphetamine in rodent models of addiction. The present study assessed the effects of exposure to 14 days of chronic variable stress (CVS), or no stress as a control (CON), on the rewarding and reinforcing effects of methamphetamine in adult rats using the conditioned place preference (Experiment 1) and intravenous self-administration (Experiment 2) paradigms. In Experiment 2, we also assessed individual differences in open field locomotor activity, anxiety-like behavior in the elevated plus maze (EPM), and physiological responses to a novel environment as possible predictors of methamphetamine intake patterns. Exposure to CVS for 14 days did not affect overall measures of methamphetamine conditioned reward or reinforcement. However, analyses of individual differences and direct vs. indirect effects revealed that rats exhibiting high physiological reactivity and locomotor activity in the EPM and open field tests self-administered more methamphetamine and reached higher breakpoints for drug reinforcement than rats exhibiting low reactivity. In addition, CVS exposure significantly increased the proportion of rats that exhibited high reactivity, and high reactivity was significantly correlated with increased levels of methamphetamine intake. These findings suggest that individual differences in physiological and locomotor reactivity to novel environments, as well as their interactions with stress history, predict patterns of drug intake in rodent models of methamphetamine addiction. Such predictors may eventually inform future strategies for implementing individualized treatment strategies for amphetamine use disorders.

Collaboration


Dive into the Sara B. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge