Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Bogialli is active.

Publication


Featured researches published by Sara Bogialli.


Journal of Inorganic Biochemistry | 2014

Synthesis and biological assays on cancer cells of dinuclear gold complexes with novel functionalised di(N-heterocyclic carbene) ligands.

Marco Baron; Stéphane Bellemin-Laponnaz; Cristina Tubaro; Marino Basato; Sara Bogialli; Alessandro Dolmella

New dinuclear di(N-heterocyclic carbene) silver(I), gold(I) and gold(III) complexes have been synthesised and their antiproliferative effects towards various cancer cell lines have been screened. The di(N-heterocyclic carbene) ligands have a propylene linker between the carbene moieties and the imidazole backbone has been functionalised with a 1-benzyl- or 1-PEG-1,2,3-triazole ring (PEG=poly(ethylene glycol)) via a CuAAC (copper azido alkyne cycloaddition) reaction. The resulting gold(I) and gold(III) complexes display an antiproliferative activity superior to that of the unfunctionalised pristine complexes together with a higher selectivity towards cancerous cells with respect to healthy cells.


Analytical and Bioanalytical Chemistry | 2013

UHPLC-DAD method for the determination of neonicotinoid insecticides in single bees and its relevance in honeybee colony loss investigations.

Andrea Tapparo; Chiara Giorio; Lidia Soldà; Sara Bogialli; Daniele Marton; Matteo Marzaro; Vincenzo Girolami

In the understanding of colony loss phenomena, a worldwide crisis of honeybee colonies which has serious consequences for both apiculture and bee-pollination-dependent farm production, analytical chemistry can play an important role. For instance, rapid and accurate analytical procedures are currently required to better assess the effects of neonicotinoid insecticides on honeybee health. Since their introduction in agriculture, neonicotinoid insecticides have been blamed for being highly toxic to honeybees, possibly at the nanogram per bee level or lower. As a consequence, most of the analytical methods recently optimized have focused on the analysis of ultratraces of neonicotinoids using liquid chromatography–mass spectrometry techniques to study the effects of sublethal doses. However, recent evidences on two novel routes—seedling guttations and seed coating particulate, both associated with corn crops—that may expose honeybees to huge amounts of neonicotinoids in the field, with instantly lethal effects, suggest that selected procedures need optimizing. In the present work, a simplified ultra-high-performance liquid chromatography–diode-array detection method for the determination of neonicotinoids in single bees has been optimized and validated. The method ensures good selectivity, good accuracy, and adequate detection limits, which make it suitable for the purpose, while maintaining its ability to evaluate exposure variability of individual bees. It has been successfully applied to the analysis of bees in free flight over an experimental sowing field, with the bees therefore being exposed to seed coating particulate released by the pneumatic drilling machine.


Environmental Science & Technology | 2013

Management of a Toxic Cyanobacterium Bloom (Planktothrix rubescens) Affecting an Italian Drinking Water Basin: A Case Study

Sara Bogialli; Federica Nigro Di Gregorio; Luca Lucentini; Emanuele Ferretti; Massimo Ottaviani; Nicola Ungaro; Pier Paolo Abis; Matteo Cannarozzi de Grazia

An extraordinary bloom of Planktothrix rubescens, which can produce microcystins (MCs), was observed in early 2009 in the Occhito basin, used even as a source of drinking water in Southern Italy. Several activities, coordinated by a task force, were implemented to assess and manage the risk associated to drinking water contaminated by cyanobacteria. Main actions were: evaluation of analytical protocols for screening and confirmatory purpose, monitoring the drinking water supply chain, training of operators, a dedicated web site for risk communication. ELISA assay was considered suitable for health authorities as screening method for MCs and to optimize frequency of sampling according to alert levels, and as internal control for the water supplier. A liquid chromatography-tandem mass spectrometric method able to quantify 9 MCs was optimized with the aim of supporting health authorities in a comprehensive risk evaluation based on the relative toxicity of different congeners. Short, medium, and long-term corrective actions were implemented to mitigate the health risk. Preoxidation with chlorine dioxide followed by flocculation and settling have been shown to be effective in removing MCs in the water treatment plant. Over two years, despite the high levels of cyanobacteria (up to 160 × 10(6) cells/L) and MCs (28.4 μg/L) initially reached in surface waters, the drinking water distribution was never limited.


Chemistry: A European Journal | 2013

Degradation Products from Naturally Aged Paper Leaves of a 16th-Century-Printed Book: A Spectrochemical Study

Maddalena Bronzato; Paolo Calvini; Carlo Federici; Sara Bogialli; Gabriella Favaro; Moreno Meneghetti; Miriam; Marina Brustolon; Alfonso Zoleo

In this work, we present a wide-range spectrochemical analysis of the degradation products from naturally aged paper. The samples obtained from wash waters used during the de-acidification treatment of leaves from a 16th-century-printed book were analysed through NMR, IR, Raman UV/Vis, EPR and X-ray fluorescence (XRF) spectroscopy and HPLC-MS and inductively coupled plasma (ICP) analysis. By these methods we also studied some of the previous samples treated by acidification (sample AP) and catalytic hydrogenation (sample HP). Crossing all the data, we obtained precise indications about the main functional groups occurring on the degraded, water-soluble cellulose oligomers. These results point out that the chromophores responsible for browning are conjugated carbonyl and carboxyl compounds. As a whole, we show that the analysis of wash waters, used in the usual conservation treatments of paper de-acidification, gives much valuable information about both the conservation state of the book and the degradation reactions occurring on the leaves, due to the huge amount of cellulose by-products contained in the samples. We propose therefore this procedure as a new very convenient general method to obtain precious and normally unavailable information on the cellulose degradation by-products from naturally aged paper.


Marine Drugs | 2017

The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH

Daniela Gabbia; Stefano Dall’Acqua; Iole Maria Di Gangi; Sara Bogialli; Valentina Caputi; Laura Albertoni; Ilaria Marsilio; Nicola Paccagnella; Maria Carrara; Maria Cecilia Giron; Sara De Martin

Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM.


British Journal of Pharmacology | 2017

Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice

Valentina Caputi; Ilaria Marsilio; Viviana Filpa; Silvia Cerantola; Genny Orso; Michela Bistoletti; Nicola Paccagnella; Sara De Martin; Monica Montopoli; Stefano Dall'Acqua; Francesca Crema; Iole Maria Di Gangi; Francesca Galuppini; Isabella Lante; Sara Bogialli; Massimo Rugge; Patrizia Debetto; Cristina Giaroni; Maria Cecilia Giron

Gut microbiota is essential for the development of the gastrointestinal system, including the enteric nervous system (ENS). Perturbations of gut microbiota in early life have the potential to alter neurodevelopment leading to functional bowel disorders later in life. We examined the hypothesis that gut dysbiosis impairs the structural and functional integrity of the ENS, leading to gut dysmotility in juvenile mice.


Journal of Agricultural and Food Chemistry | 2015

In Vitro Production of Fumonisins by Fusarium verticillioides under Oxidative Stress Induced by H2O2

Davide Ferrigo; Alessandro Raiola; Sara Bogialli; Claudio Bortolini; Andrea Tapparo; Roberto Causin

The effects of oxidative stress induced by H2O2 were tested in liquid cultures in the fumonisin-producing fungus Fusarium verticillioides. The quantitative analysis of fumonisins B1, B2, B3, and B4 was achieved by means of liquid chromatography coupled to high-resolution mass spectrometry. Two effects in F. verticillioides, consisting of different abilities to produce fumonisins in response to oxidative stress, were identified. Following H2O2 addition, two F. verticillioides strains produced significantly more fumonisin (>300%) while three other strains produced significantly less (<20%) in comparison to control cultures. Transcriptional studies with seven biosynthetic genes showed a significant increase in transcript levels in the strain that made more fumonisin and either no or minimal changes in the strain that made less fumonisin. Our data indicate the important role of oxidative stress toward the modulation of the fumonisin biosynthesis and suggest the necessity to verify the presence of such divergent behavior in F. verticillioides populations under natural conditions.


Chemosphere | 2014

Characterization and quantification of N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine biocide by NMR, HPLC/MS and titration techniques

Andrea Mondin; Sara Bogialli; Alfonso Venzo; Gabriella Favaro; Denis Badocco; Paolo Pastore

The present paper reports the determination of the tri-amine N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (TA) present in a raw material called LONZABAC used to formulate various, widely used commercial biocides. The active principle, TA, is present in LONZABAC together with other molecules at lower concentration levels. Three independent analytical approaches, namely solution NMR spectroscopy, liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) and acid-base titration in mixed solvent, were used to overcome the problem of the non-availability of the active principle as high purity standard. NMR analysis of raw material, using a suitable internal standard, evidenced in all analyzed lots the presence of the active principle, the N-dodecyl-1,3-propanediamine (DA) and the n-dodecylamine (MA) and the absence of non-organic, NMR-inactive species. NMR peak integration led to a rough composition of the MA:DA:TA as 1:9:90. The LC/HRMS analysis allowed the accurate determination of DA and MA and confirmed in all samples the presence of the TA, which was estimated by difference: MA=1.4±0.3%, DA=11.1±0.7%, TA=87.5±1.3%. The obtained results were used to setup an easy, rapid and cheap acid-base titration method able to furnish a sufficiently accurate evaluation of the active principle both in the raw material and in diluted commercial products. For the raw material the results were: TA+MA=91.1±0.8% and DA-MA=8.9±0.8%, statistically coherent with LC/MS ones. The LC/MS approach demonstrated also its great potentialities to recognize trace of the biocide components both in environmental samples and in the formulated commercial products.


Journal of Chromatography A | 2013

Ultratrace determination of total and available cyanides in industrial wastewaters through a rapid headspace-based sample preparation and gas chromatography with nitrogen phosphorous detection analysis.

Daniele Marton; Andrea Tapparo; Valerio Di Marco; Carla Repice; Chiara Giorio; Sara Bogialli

A new analytical method for the determination of both available (free and weak acid dissociable, WAD) and total cyanides in industrial wastewaters has been developed. It is based on the static headspace (HS) sampling procedure followed by a GC separation and the selective nitrogen-phosphorous detection (NPD), in which different thermal treatment allows the speciation of total and available cyanides. Detection limits (0.5μg/L), recovery (84.7-114.6% for free and 76.8-121.5% for total cyanides) and precision (5% at 5μg/L), evaluated on both real and synthetic samples, were fit-for-purpose for the legal requirement (5μg/L) enforced in the Venice lagoon, without significant interfering species. In addition, analytical results of the HS-GC-NPD method have been compared with those obtained using the 4500 CN and EN ISO 14403 official methods for the determination of total and free cyanides, respectively. The new method has been successfully applied for the determination of cyanide concentrations in main influent and final effluent to the Venice lagoon to verify the efficiency of the industrial wastewater treatment plant of Porto Marghera (Venice, Italy). The capability of the proposed method to detect the WAD cyanides has been tested by studying the acid dissociation of K2[Ni(CN)4]. An unexpected speciation picture was obtained for this complex, which suggests that the present definition and analytical strategy of this cyanide class should be reconsidered.


British Journal of Pharmacology | 2017

Antibiotic-induced microbiota dysbiosis impairs neuromuscular function in juvenile mice

Valentina Caputi; Ilaria Marsilio; Viviana Filpa; Silvia Cerantola; Genny Orso; Michela Bistoletti; Nicola Paccagnella; Sara De Martin; Monica Montopoli; Stefano Dall'Acqua; Francesca Crema; Iole Maria Di Gangi; Francesca Galuppini; Isabella Lante; Sara Bogialli; Massimo Rugge; Patrizia Debetto; Cristina Giaroni; Maria Cecilia Giron

Gut microbiota is essential for the development of the gastrointestinal system, including the enteric nervous system (ENS). Perturbations of gut microbiota in early life have the potential to alter neurodevelopment leading to functional bowel disorders later in life. We examined the hypothesis that gut dysbiosis impairs the structural and functional integrity of the ENS, leading to gut dysmotility in juvenile mice.

Collaboration


Dive into the Sara Bogialli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Lucentini

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge