Sara Brofferio
University of Paris-Sud
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara Brofferio.
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2005
Sara Brofferio; Wolfgang Woess
Abstract We determine the precise asymptotic behaviour (in space) of the Green kernel of simple random walk with drift on the Diestel–Leader graph DL ( q , r ) , where q , r ⩾ 2 . The latter is the horocyclic product of two homogeneous trees with respective degrees q + 1 and r + 1 . When q = r , it is the Cayley graph of the wreath product (lamplighter group) Z q ≀ Z with respect to a natural set of generators. We describe the full Martin compactification of these random walks on DL -graphs and, in particular, lamplighter groups. This completes previous results of Woess, who has determined all minimal positive harmonic functions.
Annals of Probability | 2015
Sara Brofferio; Dariusz Buraczewski
We consider stochastic dynamical systems on
International Mathematics Research Notices | 2012
Sara Brofferio; Maura Salvatori; Wolfgang Woess
{\mathbb{R}}
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2012
Sara Brofferio; Dariusz Buraczewski; Ewa Damek
, that is, random processes defined by
Proceedings of the American Mathematical Society | 2001
Sara Brofferio; Wolfgang Woess
X_n^x=\Psi_n(X_{n-1}^x)
Archive | 2013
Sara Brofferio; Dariusz Buraczewski; Ewa Damek
,
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2003
Sara Brofferio
X_0^x=x
Probability Theory and Related Fields | 2006
Sebastien Blachere; Sara Brofferio
, where
Potential Analysis | 2006
Sara Brofferio; Wolfgang Woess
\Psi _n
Israel Journal of Mathematics | 2011
Sara Brofferio; Bruno Schapira
are i.i.d. random continuous transformations of some unbounded closed subset of