Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara C. Hamon is active.

Publication


Featured researches published by Sara C. Hamon.


Ophthalmology | 2008

CFH and LOC387715/ARMS2 Genotypes and Treatment with Antioxidants and Zinc for Age-Related Macular Degeneration

Michael L. Klein; Peter J. Francis; Bernard Rosner; Robyn Reynolds; Sara C. Hamon; Dennis W. Schultz; Jurg Ott; Johanna M. Seddon

OBJECTIVE To determine if CFH and LOC387715/ARMS2 genotypes influence treatment response to AREDS-type nutritional supplementation with antioxidants and zinc. DESIGN Retrospective analysis of participants in a randomized, controlled clinical trial, the Age-Related Eye Disease Study (AREDS). PARTICIPANTS AND/OR CONTROLS Eight hundred seventy-six AREDS study participants who were considered at high risk for developing advanced age-related macular degeneration (AMD). METHODS Using DNA extracted from venous blood of 876 white participants in AREDS categories 3 and 4, that is, those considered to be at high risk for progression to advanced AMD, the authors genotyped for the single nucleotide polymorphisms in the CFH (Y402H, rs1061170) and LOC387715/ARMS2 (A69S, rs10490924) genes. The authors performed adjusted unconditional logistic regression analysis and assessed interactions of these genotypes to determine the relationship between CFH and LOC387715/ARMS2 genotype and treatment with antioxidants plus zinc. MAIN OUTCOME MEASURES Interaction between genetic variants and treatment response as determined by progression from high-risk to advanced AMD. RESULTS Progression occurred in 264 of 876 patients from AREDS category 3 (intermediate AMD) to category 4 or 5 (unilateral or bilateral advanced AMD, respectively), or from category 4 to category 5. A treatment interaction was observed between the CFH Y402H genotype and supplementation with antioxidants plus zinc (CC; P = 0.03). An interaction (P = 0.004) was observed in the AREDS treatment groups taking zinc when compared with the groups taking no zinc, but not in groups taking antioxidants compared with those taking no antioxidants (P = 0.59). There were no significant treatment interactions observed with LOC387715/ARMS2. CONCLUSIONS The findings of this study indicate that an individuals response to AREDS supplements may be related to CFH genotype. This could have clinical relevance by predicting treatment outcome and potentially preventing unwanted side effects in those who may not benefit. Corroboration of these analyses is needed before considering modification of current management. This is among the first pharmacogenetic studies to suggest interaction between genotype and treatment.


Journal of Medical Genetics | 2009

Polymorphisms in C2, CFB and C3 are associated with progression to Advanced Age-Related Macular Degeneration associated with visual loss

Peter J. Francis; Sara C. Hamon; Jurg Ott; Richard G. Weleber; Michael L. Klein

Background: Age related macular degeneration (AMD) is a leading cause of blindness. AMD is a complex disorder caused by genetic and environmental factors in which single nucleotide polymorphisms (SNPs) in the genes CFH and LOC387715/HTRA1/ARMS2 have prognostic importance for progression to advanced AMD (with visual loss). CFH may also have a pharmacogenetic role by affecting treatment response to widely used nutritional supplements. This paper examines other AMD susceptibility genes to determine if these genotypes influenced disease progression and treatment response. Methods: Three cohorts, totalling 3137 individuals, were genotyped for SNPs in 13 genes previously published to be associated with advanced AMD (other than CFH and LOC387715/ARMS2/HTRA1). Those genes found associated were then evaluated for their involvement in disease progression. Interactions between the genes and with AREDS (Age-Related Eye Disease Study) nutritional supplements were investigated. Results: Positive independent associations were noted in SNPs in the genes C2 (p = 0.0001, odds ratio (OR) 0.35, 95% confidence interval (CI) 0.2 to 0.6), CFB (p = 0.0001, OR 0.35, 95% CI 0.2 to 0.6), C3 (p = 0.0001, OR 3.91, 95% CI 1.94 to 7.88), APOE (ε4, p = 0.01, OR 0.50, 95% CI 0.29 to 0.86) and VEGFA (p = 0.01, OR 2.23, 95% CI 1.06 to 4.68). C2/CFB and C3 were independently related to progression from early/intermediate to advanced AMD with OR 0.32 (95% CI 0.14 to 0.73) and 3.32 (95% CI 1.46 to 7.59), respectively. Gene–gene and pharmacogenetic interactions were not observed. No preferential associations were observed with geographic atrophy or choroidal neovascularisation. Conclusion: This study provides insights into the genetic pathogenesis of AMD. Five genes have now been shown to be independently involved in progression from intermediate disease (before vision loss has occurred) to advanced disease in which blindness is frequent.


Neuropsychopharmacology | 2009

Increased OPRM1 DNA Methylation in Lymphocytes of Methadone Maintained Former Heroin Addicts

David A. Nielsen; Vadim Yuferov; Sara C. Hamon; Colin Jackson; Ann Ho; Jurg Ott; Mary Jeanne Kreek

The μ-opioid receptor is the site of action of opiates and opioids. We examined whether there are differences in cytosine:guanine (CpG) dinucleotide methylation in the OPRM1 promoter between former heroin addicts and controls. We analyzed methylation at 16 CpG dinucleotides in DNA obtained from lymphocytes of 194 Caucasian former severe heroin addicts stabilized in methadone maintenance treatment and 135 Caucasian control subjects. Direct sequencing of bisulfite-treated DNA showed that the percent methylation at two CpG sites was significantly associated with heroin addiction. The level of methylation at the −18 CpG site was 25.4% in the stabilized methadone-maintained former heroin addicts and 21.4% in controls (p=0.0035, generalized estimating equations (GEE); p=0.0077, t-test; false discovery rate (FDR)=0.048), and the level of methylation at the +84 CpG dinucleotide site was 7.4% in cases and 5.6% in controls (p=0.0095, GEE; p=0.0067, t-test; FDR=0.080). Both the −18 and the +84 CpG sites are located in potential Sp1 transcription factor-binding sites. Methylation of these CpG sites may lead to reduced OPRM1 expression in the lymphocytes of these former heroin addicts.


The New England Journal of Medicine | 2017

Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease

Frederick E. Dewey; Viktoria Gusarova; Richard L. Dunbar; Colm O’Dushlaine; Omri Gottesman; Shane McCarthy; Cristopher V. Van Hout; Shannon Bruse; Hayes M. Dansky; Joseph B. Leader; Michael F. Murray; Marylyn D. Ritchie; H. Lester Kirchner; Lukas Habegger; Alex Lopez; John S. Penn; An Zhao; Weiping Shao; Neil Stahl; Andrew J. Murphy; Sara C. Hamon; Aurelie Bouzelmat; Rick Zhang; Brad Shumel; Robert Pordy; Daniel A. Gipe; Gary A. Herman; Wayne H-H Sheu; I-Te Lee; Kae-Woei Liang

BACKGROUND Loss‐of‐function variants in the angiopoietin‐like 3 gene (ANGPTL3) have been associated with decreased plasma levels of triglycerides, low‐density lipoprotein (LDL) cholesterol, and high‐density lipoprotein (HDL) cholesterol. It is not known whether such variants or therapeutic antagonism of ANGPTL3 are associated with a reduced risk of atherosclerotic cardiovascular disease. METHODS We sequenced the exons of ANGPTL3 in 58,335 participants in the DiscovEHR human genetics study. We performed tests of association for loss‐of‐function variants in ANGPTL3 with lipid levels and with coronary artery disease in 13,102 case patients and 40,430 controls from the DiscovEHR study, with follow‐up studies involving 23,317 case patients and 107,166 controls from four population studies. We also tested the effects of a human monoclonal antibody, evinacumab, against Angptl3 in dyslipidemic mice and against ANGPTL3 in healthy human volunteers with elevated levels of triglycerides or LDL cholesterol. RESULTS In the DiscovEHR study, participants with heterozygous loss‐of‐function variants in ANGPTL3 had significantly lower serum levels of triglycerides, HDL cholesterol, and LDL cholesterol than participants without these variants. Loss‐of‐function variants were found in 0.33% of case patients with coronary artery disease and in 0.45% of controls (adjusted odds ratio, 0.59; 95% confidence interval, 0.41 to 0.85; P=0.004). These results were confirmed in the follow‐up studies. In dyslipidemic mice, inhibition of Angptl3 with evinacumab resulted in a greater decrease in atherosclerotic lesion area and necrotic content than a control antibody. In humans, evinacumab caused a dose‐dependent placebo‐adjusted reduction in fasting triglyceride levels of up to 76% and LDL cholesterol levels of up to 23%. CONCLUSIONS Genetic and therapeutic antagonism of ANGPTL3 in humans and of Angptl3 in mice was associated with decreased levels of all three major lipid fractions and decreased odds of atherosclerotic cardiovascular disease. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT01749878.)


Human Heredity | 2007

The LOC387715 gene, smoking, body mass index, environmental associations with advanced age-related macular degeneration.

Peter J. Francis; Sarah George; Dennis W. Schultz; Bernard Rosner; Sara C. Hamon; Jurg Ott; Richard G. Weleber; Michael L. Klein; Johanna M. Seddon

Background and Aims: Age-related macular degeneration (AMD) is the leading cause of blindness in the Western World. It is now evident that both genetic and environmental factors contribute to disease susceptibility. We tested the hypotheses that (a) a common coding SNP in the LOC387715 gene is associated with advanced AMD (geographic atrophy or choroidal neovascularization), and (b) that modifiable environmental exposures alter AMD susceptibility associated with this SNP. Methods: A case-control association analysis was performed on participants (530 advanced AMD cases and 280 controls) ascertained as part of the multi-center Age-Related Eye Disease Study. AMD status was determined by the reading center from fundus photographs using the AREDS AMD grading categorization. Environmental risk factor exposure data was collected from participants whose DNA was also genotyped for the LOC387715 gene SNP rs10490924. Multivariate logistic regression analyses were performed. Results and Conclusions: The number of risk alleles at the LOC387715 SNP was associated with advanced AMD, with odds ratios (OR) = 3.0 (95% confidence interval (CI) 2.1–4.3) for the GT heterozygous genotype and OR = 12.1 (5.6–26.5) for the homozygous TT risk genotype, after controlling for demographic and behavioral risk factors. The LOC387715 SNP was associated with both forms of advanced AMD. Current cigarette smoking and body mass index were independently related to AMD, controlling for genotype. However, there was no statistical interaction between LOC387715 genotype and smoking with regard to advanced AMD development.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Amino acid variant in the kinase binding domain of dual-specific A kinase-anchoring protein 2: A disease susceptibility polymorphism

Stefan Kammerer; Lora L. Burns-Hamuro; Yuliang Ma; Sara C. Hamon; Jaume M. Canaves; Michael M. Shi; Matthew R. Nelson; Charles F. Sing; Charles R. Cantor; Susan S. Taylor; Andreas Braun

The focus of human genetics in recent years has shifted toward identifying genes that are involved in the development of common diseases such as cancer, diabetes, cardiovascular diseases, and Alzheimers disease. Because many complex diseases are late-onset, the frequencies of disease susceptibility alleles are expected to decrease in the healthy elderly individuals of the population at large because of their contribution to disease morbidity and/or mortality. To test this assumption, we compared allele frequencies of 6,500 single-nucleotide polymorphisms (SNPs) located in ≈5,000 genes between DNA pools of age-stratified healthy, European-American individuals. A SNP that results in an amino acid change from Ile to Val in the dual-specific A kinase-anchoring protein 2 (d-AKAP2) gene, showed the strongest correlation with age. Subsequent analysis of an independent sample indicated that the Val variant was associated with a statistically significant decrease in the length of the electrocardiogram PR interval. The Ile/Val SNP is located in the A-kinase-binding domain. An in vitro binding assay revealed that the Ile variant bound ≈3-fold weaker to the protein kinase A (PKA)-RIα isoform than the Val variant. This decreased affinity resulted in alterations in the subcellular distribution of the recombinantly expressed PKA-RIα isoform. Our study suggests that alterations in PKA-RIα subcellular localization caused by variation in d-AKAP2 may have a negative health prognosis in the aging population, which may be related to cardiac dysfunction. Age-stratified samples appear to be useful for screening SNPs to identify functional gene variants that have an impact on health.


PLOS ONE | 2007

Haplotypes in the complement factor H (CFH) gene: associations with drusen and advanced age-related macular degeneration.

Peter J. Francis; Dennis W. Schultz; Sara C. Hamon; Jurg Ott; Richard G. Weleber; Michael L. Klein

Background Age-related macular degeneration (AMD), the leading cause of blindness in the Western world, is a complex disease that affects people over 50 years old. The complement factor H (CFH) gene has been repeatedly shown to be a major factor in determining susceptibility to the advanced form of the condition. We aimed to better understand the functional role of this gene in the AMD disease process and assess whether it is associated with earlier forms of the disease. Methodology/Principal Findings We genotyped SNPs at the CFH gene locus in three independent populations with AMD: (a) extended families where at least 3 family members had AMD; (b) sporadic cases of advanced AMD and (c) cases from the Age-Related Eye Disease Study (AREDS). We investigated polymorphisms and haplotypes in and around the CFH gene to assess their role in AMD. CFH is associated with early/intermediate and advanced AMD in both familial and sporadic cases. In our populations, the CFH SNP, rs2274700, is most strongly associated with AMD and when incorporated into a haplotype with the Y402H SNP and rs1061147, the strongest association is observed (p<10−9). Conclusions/Significance Our results, reproduced in three populations that represent the spectrum of AMD cases, provide evidence that the CFH gene is associated with drusen as well as with advanced AMD. We also identified novel susceptibility and protective haplotypes in the AMD populations.


Human Molecular Genetics | 2008

Rhesus monkeys and humans share common susceptibility genes for age-related macular disease

Peter J. Francis; Binoy Appukuttan; Emily Simmons; N. Landauer; Jonathan Stoddard; Sara C. Hamon; Jurg Ott; Betsy Ferguson; Michael L. Klein; J. Timothy Stout; Martha Neuringer

Age-related macular degeneration (AMD), a complex multigenic disorder and the most common cause of vision loss in the elderly, is associated with polymorphisms in the LOC387715/ARMS2 and HTRA1 genes on 10q26. Like humans, macaque monkeys possess a macula and develop age-related macular pathologies including drusen, the phenotypic hallmark of AMD. We genotyped a cohort of 137 unrelated rhesus macaques with and without macular drusen. As in humans, one variant within LOC387715/ARMS2 and one in HTRA1 were significantly associated with affected status. HTRA1 and the predicted LOC387715/ARMS2 gene were both transcribed in rhesus and human retina and retinal pigment epithelium. Among several primate species, orthologous exons for the human LOC387715/ARMS2 gene were present only in Old World monkeys and apes. In functional analyses, the disease-associated HTRA1 polymorphism resulted in a 2-fold increase in gene expression, supporting a role in pathogenesis. These results demonstrate that two genes associated with AMD in humans are also associated with macular disease in rhesus macaques and that one of these genes is specific to higher primates. This is the first evidence that humans and macaques share the same genetic susceptibility factors for a common complex disease.


Addiction Biology | 2013

CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction

Orna Levran; Einat Peles; Sara C. Hamon; Matthew Randesi; Miriam Adelson; Mary Jeanne Kreek

Adequate methadone dosing in methadone maintenance treatment (MMT) for opioid addiction is critical for therapeutic success. One of the challenges in dose determination is the inter‐individual variability in dose‐response. Methadone metabolism is attributed primarily to cytochrome P450 enzymes CYP3A4, CYP2B6 and CYP2D6. The CYP2B6*6 allele [single nucleotide polymorphisms (SNPs) 785A>G (rs2279343) and 516G>T (rs3745274)] was associated with slow methadone metabolism. To explore the effects of CYP2B6*6 allele on methadone dose requirement, it was genotyped in a well‐characterized sample of 74 Israeli former heroin addicts in MMT. The sample is primarily of Middle Eastern/European ancestry, based on ancestry informative markers (AIMs). Only patients with no major co‐medication that may affect methadone metabolism were included. The stabilizing daily methadone dose in this sample ranges between 13 and 260 mg (mean 140 ± 52 mg). The mean methadone doses required by subjects homozygous for the variant alleles of the CYP2B6 SNPs 785A>G and 516G>T (88, 96 mg, respectively) were significantly lower than those of the heterozygotes (133, 129 mg, respectively) and the non‐carriers (150, 151 mg, respectively) (nominal P = 0.012, 0.048, respectively). The results remain significant after controlling for age, sex and the ABCB1 SNP 1236C>T (rs1128503), which was previously shown to be associated with high methadone dose requirement in this population (P = 0.006, 0.030, respectively). An additional 77 CYP2B6, CYP3A4 and CYP2D6 SNPs were genotyped. Of these, 24 SNPs were polymorphic and none showed significant association with methadone dose. Further studies are necessary to replicate these preliminary findings in additional subjects and other populations.


Biological Psychiatry | 2013

Pharmacogenetic randomized trial for cocaine abuse: disulfiram and dopamine β-hydroxylase.

Thomas R. Kosten; Guiying Wu; Wen Huang; Mark J. Harding; Sara C. Hamon; Jaakko Lappalainen; David A. Nielsen

BACKGROUND Disulfiram has been an effective cocaine addiction pharmacotherapy, and one of its possible mechanisms of efficacy is through copper chelation and inhibition of an enzyme involved in catecholamine metabolism, dopamine β-hydroxylase (DβH), which converts dopamine to norepinephrine. A variant in the gene encoding DβH leads to reduced DβH activity, and as such, disulfiram might not be an effective treatment of cocaine dependence for individuals with this variant. This study explored that potential matching. METHODS Seventy-four cocaine- and opioid-codependent (DSM-V) subjects were stabilized on methadone for 2 weeks and subsequently randomized into disulfiram (250 mg/day, n = 34) and placebo groups (n = 40) for 10 weeks. We genotyped the DBH gene polymorphism, -1021C/T (rs1611115), that reduces DβH enzyme levels and evaluated its role for increasing cocaine free urines with disulfiram. RESULTS With repeated measures analysis of variance, corrected for population structure, disulfiram pharmacotherapy reduced cocaine-positive urines from 80% to 62% (p = .0001), and this disulfiram efficacy differed by DBH genotype group. Patients with the normal DβH level genotype dropped from 84% to 56% on disulfiram (p = .0001), whereas those with the low DBH level genotype showed no disulfiram effect. CONCLUSIONS This study indicates that the DBH genotype of a patient could be used to identify a subset of individuals for which disulfiram treatment might be an effective pharmacotherapy for cocaine dependence.

Collaboration


Dive into the Sara C. Hamon's collaboration.

Top Co-Authors

Avatar

David A. Nielsen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jurg Ott

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Thomas R. Kosten

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Ho

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge