Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Carpi is active.

Publication


Featured researches published by Sara Carpi.


European Journal of Medicinal Chemistry | 2015

New quinolone- and 1,8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno-modulatory activity.

Clementina Manera; Anna Maria Malfitano; Teija Parkkari; Valentina Lucchesi; Sara Carpi; Stefano Fogli; Simone Bertini; Chiara Laezza; Alessia Ligresti; Giuseppe Saccomanni; Juha R. Savinainen; Elena Ciaglia; Simona Pisanti; Patrizia Gazzerro; Vincenzo Di Marzo; Paola Nieri; Marco Macchia; Maurizio Bifulco

Several recent studies suggest that selective CB2 receptor agonists may represent a valid pharmacological approach in the treatment of various diseases due to the absence of relevant psychoactive side effect. In this study, we synthesized and tested a series of new quinoline-2(1H)-one- and 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine derivatives characterized by a 4-methylcyclohexylamido substituent in position 3 of the heterocyclic nucleus with high CB2 receptor affinity and selectivity. Two compounds showing the best binding and selectivity profile behaved as a full agonist and a partial agonist at the CB2 receptor and induced a concentration-dependent decrease of cell viability on LNCaP, a prostatic cancer cell line expressing CB2 receptor. Moreover considering that the CB2 receptor is mainly expressed in cells and organs of the immune system, the same compounds were studied for their potential immune-modulatory and anti-inflammatory effects in activated lymphocytes isolated from healthy controls and multiple sclerosis (MS) patients.


PLOS ONE | 2014

Theranostic Properties of a Survivin-Directed Molecular Beacon in Human Melanoma Cells

Sara Carpi; Stefano Fogli; Ambra Giannetti; Barbara Adinolfi; Sara Tombelli; Eleonora Da Pozzo; Alessia Vanni; Enrica Martinotti; Claudia Martini; Maria Cristina Breschi; Mario Pellegrino; Paola Nieri; Francesco Baldini

Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB) that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP) and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes). MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.


Nutrition and Cancer | 2016

Cytotoxic Activity of Oleocanthal Isolated from Virgin Olive Oil on Human Melanoma Cells.

Stefano Fogli; Chiara Arena; Sara Carpi; Beatrice Polini; Simone Bertini; Maria Digiacomo; Francesca Gado; Alessandro Saba; Giuseppe Saccomanni; Maria Cristina Breschi; Paola Nieri; Clementina Manera; Marco Macchia

ABSTRACT Oleocanthal is one of the phenolic compounds of extra virgin olive oil with important anti-inflammatory properties. Although its potential anticancer activity has been reported, only limited evidence has been provided in cutaneous malignant melanoma. The present study is aimed at investigating the selective in vitro antiproliferative activity of oleocanthal against human malignant melanoma cells. Since oleocanthal is not commercially available, it was obtained as a pure standard by direct extraction and purification from extra virgin olive oil. Cell viability experiments carried out by WST-1 assay demonstrated that oleocanthal had a remarkable and selective activity for human melanoma cells versus normal dermal fibroblasts with IC50s in the low micromolar range of concentrations. Such an effect was paralleled by a significant inhibition of ERK1/2 and AKT phosphorylation and downregulation of Bcl-2 expression. These findings may suggest that extra virgin olive oil phenolic extract enriched in oleocanthal deserves further investigation in skin cancer.


Tumor Biology | 2017

Identification of plasma microRNAs as new potential biomarkers with high diagnostic power in human cutaneous melanoma.

Stefano Fogli; Beatrice Polini; Sara Carpi; Barbara Pardini; Alessio Naccarati; Nevio Dubbini; Maria Lanza; Maria Cristina Breschi; Antonella Romanini; Paola Nieri

Melanoma is a devastating disease with few therapeutic options in the advanced stage and with the urgent need of reliable biomarkers for early detection. In this context, circulating microRNAs are raising great interest as diagnostic biomarkers. We analyzed the expression profiles of 21 selected microRNAs in plasma samples from melanoma patients and healthy donors to identify potential diagnostic biomarkers. Data analysis was performed using global mean normalization and NormFinder algorithm. Linear regression followed by receiver operating characteristic analyses was carried out to evaluate whether selected plasma miRNAs were able to discriminate between cases and controls. We found five microRNAs that were differently expressed among cases and controls after Bonferroni correction for multiple testing. Specifically, miR-15b-5p, miR-149-3p, and miR-150-5p were up-regulated in plasma of melanoma patients compared with healthy controls, while miR-193a-3p and miR-524-5p were down-regulated. Receiver operating characteristic analyses of these selected microRNAs provided area under the receiver operating characteristic curve values ranging from 0.80 to 0.95. Diagnostic value of microRNAs is improved when considering the combination of miR-149-3p, miR-150-5p, and miR-193a-3p. The triple classifier had a high capacity to discriminate between melanoma patients and healthy controls, making it suitable to be used in early melanoma diagnosis.


European Journal of Pharmaceutical Sciences | 2018

Sucrosomial® iron absorption studied by in vitro and ex-vivo models

Angela Fabiano; Elisa Brilli; Stefano Fogli; Denise Beconcini; Sara Carpi; Germano Tarantino; Ylenia Zambito

ABSTRACT This paper presents a comparative evaluation of different oral ferric iron formulations for ability to retain Fe3+ in simulated gastric fluid (SGF), be internalized by cells lining intestinal epithelium, and cross it to reach the bloodstream. In all formulations iron was ferric pyrophosphate, the excipients were different types and fractions of lecithin plus sucrose esters of fatty acids matrix (Sideral® RM; PRT1; PRT2) or lecithin without sucrester (SUN). Dissolution kinetics of formulations in SGF was studied by USP method. The ability of the formulations to promote iron intestinal absorption was evaluated by the Caco‐2 cell model, measuring cellular ferritin content, and by the excised rat intestine model, yielding apparent permeability parameters (Papp). All formulations limited iron release in SGF to ≤10%. Sideral® RM was by far the most absorbed by Caco‐2, as ferritin content was in the order: Sideral® RM ≫ PRT2 > PRT1 > SUN > control. The Fe3+ crossing the intestinal barrier was in part reduced to Fe2+ by epithelial enzymes, in part it was carried by formulation rearrangement into nano‐structures able to protect it from reduction and apt for internalization by epithelium cells. Papp parameters were in the order: Sideral® RM ≫ PRT1 > PRT2 > SUN = control. Relevance of transepithelial Fe2+carrier, DMT‐1, to Fe3+ transport was ruled out using a DMT‐1 inhibitor. In conclusion, Sideral® RM retains iron in SGF, and is the most suitable for Fe3+ internalization by Caco‐2 cells, Fe3+ protection from enzymatic reduction and promotion of Fe3+ absorption across intestinal epithelium, non‐mediated by DMT‐1. Graphical Abstract Figure. No Caption available.


Toxicology in Vitro | 2017

Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

Sara Carpi; Stefano Fogli; Beatrice Polini; Valentina Montagnani; Adriano Podestà; Maria Cristina Breschi; Antonella Romanini; Barbara Stecca; Paola Nieri

The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma.


Biosensors and Bioelectronics | 2017

Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells.

Barbara Adinolfi; Mario Pellegrino; Ambra Giannetti; Sara Tombelli; Cosimo Trono; Giovanna Sotgiu; Greta Varchi; Marco Ballestri; Tamara Posati; Sara Carpi; Paola Nieri; Francesco Baldini

One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm2), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm2). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation.


Toxicology in Vitro | 2018

Oleocanthal and oleacein contribute to the in vitro therapeutic potential of extra virgin oil-derived extracts in non-melanoma skin cancer

Beatrice Polini; Maria Digiacomo; Sara Carpi; Simone Bertini; Francesca Gado; Giuseppe Saccomanni; Marco Macchia; Paola Nieri; Clementina Manera; Stefano Fogli

Although the anticancer properties of extra virgin olive oil (EVOO) extracts have been recognized, the role of single compounds in non-melanoma skin cancer is still unknown. The in vitro chemopreventive and anticancer action of EVOO extracts and oil-derived compounds in non-melanoma skin cancer models were evaluated on cutaneous squamous cell carcinoma cells and on immortalized human keratinocytes stimulated with epidermal growth factor. Preparation of EVOO extracts and isolation of single compounds was carried out by chromatographic methods. Antitumor activity was assessed by cell-based assays (cell viability, migration, clonogenicity, and spheroid formation) and apoptosis documented by internucleosomal DNA fragmentation. Finally, inhibition of key oncogenic signaling nodes involved in the progression from actinic keratosis to cutaneous squamous cell carcinoma was studied by western blot. EVOO extracts reduced non-melanoma skin cancer cell viability and migration, prevented colony and spheroid formation, and inhibited proliferation of atypical keratinocytes stimulated with epidermal growth factor. Such a pharmacological activity was promoted by oleocanthal and oleacein through the inhibition of Erk and Akt phosphorylation and the suppression of B-Raf expression, whereas tyrosol and hydroxytyrosol did not have effect. The current study provides in vitro evidence for new potential clinical applications of EVOO extracts and/or single oil-derived compounds in the prevention and treatment of non-melanoma skin cancers.


Scientific Reports | 2017

Cholinesterase-like organocatalysis by imidazole and imidazole-bearing molecules

Paola Nieri; Sara Carpi; Stefano Fogli; Beatrice Polini; Maria Cristina Breschi; Adriano Podestà

Organocatalysis, which is mostly explored for its new potential industrial applications, also represents a chemical event involved in endogenous processes. In the present study, we provide the first evidence that imidazole and imidazole derivatives have cholinesterase-like properties since they can accelerate the hydrolysis of acetylthiocholine and propionylthiocholine in a concentration-dependent manner. The natural imidazole-containing molecules as L-histidine and histamine show a catalytic activity, comparable to that of imidazole itself, whereas synthetic molecules, as cimetidine and clonidine, were less active. In the experimental conditions used, the reaction progress curves were sigmoidal and the rational of such unexpected behavior as well as the mechanism of catalysis is discussed. Although indirectly, findings of the present study suggests that imidazolic compounds may interfere with the homeostasis of the cholinergic system in vivo.


mAbs | 2014

Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli

Adriano Podestà; Serena Rossi; Ilaria Massarelli; Sara Carpi; Barbara Adinolfi; Stefano Fogli; Anna Maria Bianucci; Paola Nieri

Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis.

Collaboration


Dive into the Sara Carpi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge