Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Ceccarelli is active.

Publication


Featured researches published by Sara Ceccarelli.


Journal of Immunology | 2010

TLR Ligation Triggers Somatic Hypermutation in Transitional B Cells Inducing the Generation of IgM Memory B Cells

Alaitz Aranburu; Sara Ceccarelli; Ezio Giorda; Rosa Lasorella; Giovanna Ballatore; Rita Carsetti

TLR9 activation by unmethylated CpG provides a homeostatic mechanism to maintain B cell memory in the absence of Ag. In this study, we demonstrate that CpG also triggers the generation of somatically mutated memory B cells from immature transitional B cells. In response to CpG, a fraction of transitional B cells proliferates and introduces somatic hypermutations in the H chain V regions. The nonproliferating pool of transitional B cells mostly maintains germline configurations. Mutations are VH specific: VH5 is the least mutated family, whereas VH1 and VH4/6 are the most mutated families. CpG stimulation also results in upregulation of VH5 transcripts in proliferating cells. Therefore, early recognition of bacterial DNA preferentially expands VH5-expressing B cells while inducing somatic hypermutations in other families. The mutation frequency, range, and type of substitutions observed in vitro are comparable to those found in memory B cells from the peripheral blood of Hyper IgM type 1 patients and the spleen of normal infants. The process triggered by TLRs may represent a first step leading to additional diversification of the germline repertoire and to the generation of memory B cells that will further refine their repertoire and specificity in the germinal centers.


International Journal of Molecular Sciences | 2013

Dual Role of MicroRNAs in NAFLD

Sara Ceccarelli; Nadia Panera; Daniela Gnani; Valerio Nobili

MicroRNAs are important post-transcriptional regulators in different pathophysiological processes. They typically affect the mRNA stability or translation finally leading to the repression of target gene expression. Notably, it is thought that microRNAs are crucial for regulating gene expression during metabolic-related disorders, such as nonalcoholic fatty liver disease (NAFLD). Several studies identify specific microRNA expression profiles associated to different histological features of NAFLD, both in animal models and in patients. Therefore, specific assortments of certain microRNAs could have enormous diagnostic potentiality. In addition, microRNAs have also emerged as possible therapeutic targets for the treatment of NAFLD-related liver damage. In this review, we discuss the experimental evidence about microRNAs both as potential non-invasive early diagnostic markers and as novel therapeutic targets in NAFLD and its more severe liver complications.


Digestive and Liver Disease | 2013

Gut-liver axis and fibrosis in nonalcoholic fatty liver disease: An input for novel therapies

Otilia E. Frasinariu; Sara Ceccarelli; Anna Alisi; Evelina Moraru; Valerio Nobili

Non-alcoholic fatty liver disease is a multifactorial condition, ranging from simple steatosis to non-alcoholic steatohepatitis with or without fibrosis. In non-alcoholic fatty liver disease, alteration of gut microbiota and increased intestinal permeability increase exposure of the liver to gut-derived bacterial products: lipopolysaccharides and unmethylated CpG DNA. These products stimulate innate immune receptors, namely Toll-like receptors, which activate signalling pathways involved in liver inflammation and fibrogenesis. Currently, there are several studies on the involvement of lipopolysaccharide-activated Toll-like receptor 4 signalling in non-alcoholic fatty liver disease pathogenesis. There has been widespread interest in the study of the involvement of resident hepatic stellate cells and Kupffer cells activation in liver fibrogenesis upon TLR4 stimulation. Although the best evidence to support a role for gut microbiota in non-alcoholic fatty liver disease-induced fibrosis comes largely from animal models, data from human studies are accumulating and could lead to new therapeutic approaches. Therapeutic modulation of gut microflora may be an alternative strategy to develop an anti-fibrotic therapy. In this review, we discuss the relevant role of gut-liver axis in non-alcoholic liver disease-associated liver fibrosis and discuss the evidence on novel anti-fibrotic therapeutic approaches.


PLOS ONE | 2013

Association between Serum Atypical Fibroblast Growth Factors 21 and 19 and Pediatric Nonalcoholic Fatty Liver Disease.

Anna Alisi; Sara Ceccarelli; Nadia Panera; Federica Prono; Stefania Petrini; Cristiano De Stefanis; Marco Pezzullo; Alberto E. Tozzi; Alberto Villani; Giorgio Bedogni; Valerio Nobili

Atypical fibroblast growth factors (FGF) 21 and 19 play a central role in energy metabolism through the mediation of Klotho coreceptor. Contradictory findings are available about the association of FGF21 and FGF19 with nonalcoholic fatty liver disease (NAFLD) in humans. We investigated the association of serum FGF21, FGF19 and liver Klotho coreceptor with non-alcoholic steatohepatitis (NASH) and fibrosis in children with NAFLD. Serum FGF21 and FGF19 were measured in 84 children with biopsy-proven NAFLD and 23 controls (CTRL). The hepatic expression of Klotho coreceptor was measured in 7 CTRL, 9 patients with NASH (NASH+) and 11 patients without NASH (NASH−). FGF21 and FGF19 showed a tendency to decrease from CTRL (median FGF21 = 196 pg/mL; median FGF19 = 201 pg/mL) to NASH− (FGF21 = 89 pg/mL; FGF19 = 81 pg/mL) to NASH+ patients (FGF21 = 54 pg/mL; FGF19 = 41 pg/mL) (p<0.001 for all comparisons) and were inversely associated with the probability of NASH and fibrosis in children with NAFLD. The hepatic expression of Klotho coreceptor was inversely associated with NASH (R2 = 0.87, p<0.0001) and directly associated with serum FGF21 (R2 = 0.57, p<0.0001) and FGF19 (R2 = 0.67, p<0.0001). In conclusion, serum FGF19 and FGF21 and hepatic Klotho expression are inversely associated with hepatic damage in children with NAFLD and these findings may have important implications for understanding the mechanisms of NAFLD progression.


International Journal of Molecular Medicine | 2012

Markers of activated inflammatory cells correlate with severity of liver damage in children with nonalcoholic fatty liver disease

Rita De Vito; Anna Alisi; Andrea Masotti; Sara Ceccarelli; Nadia Panera; Arianna Citti; Michele Salata; Luca Valenti; Ariel E. Feldstein; Valerio Nobili

Concomitantly to the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become the leading cause of liver disease in children. NAFLD encompasses a spectrum of histological damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), with possible progression to cirrhosis. There is growing evidence that the immune system plays a pivotal role in the initiation and progression to NASH but the cellular nature of the hepatic inflammation is still unknown. The present study includes 34 children with biopsy-proven NAFLD. Liver damage was evaluated by the NAFLD activity score (NAS), and the inflammatory infiltrate was characterized by immunohistochemistry for CD45, CD3 and CD163 which are markers of leukocytes, T cells and activated Kupffer cells/macrophages, respectively. Our results have shown that CD45+ (P<0.0001) and CD163+ (P<0.0001) cells were markedly increased in children with severe histological activity (NAS≥5) compared to children with lower activity (NAS<5), whereas CD3+ cells were significantly lower (P<0.01) in children with severe histological activity. There was a significant association between the numbers of CD45+, CD3+ and CD163+ cells, regarding both the portal tract and liver lobule, and the severity of steatosis, ballooning and fibrosis (P<0.01). These data suggest that the severity and composition of the inflammatory infiltrate correlate with steatosis and the severity of disease in children with NAFLD. Moreover, a decrease in CD3+ cells may be involved in the pathogenesis of liver damage. Future studies should evaluate whether it can predict the progression of liver disease independently of established histological scores.


Frontiers in Cellular and Infection Microbiology | 2012

Causative role of gut microbiota in non-alcoholic fatty liver disease pathogenesis.

Anna Alisi; Sara Ceccarelli; Nadia Panera; Valerio Nobili

Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide (Milic and Stimac, 2012). NAFLD affects prevalently children and adults with particular risk factors including genetic susceptibility and inappropriate lifestyle (i.e., over-/mal-nutrition and physical inactivity). In fact, obesity, as well as some traits of metabolic syndrome, such as insulin resistance and dyslipidemia, are co-morbidities often associated to the presence of NAFLD (Vanni et al., 2010). In line with the increased obesity epidemics, epidemiological studies indicate that the estimated global prevalence of NAFLD ranges from 3–10% depending on age, sex, ethnicity, and risk factors. Interestingly, in obese children and adults this prevalence may raise up to 20–80% (Alisi et al., 2009; Vernon et al., 2011).


International Journal of Molecular Sciences | 2014

Plasma Levels of Homocysteine and Cysteine Increased in Pediatric NAFLD and Strongly Correlated with Severity of Liver Damage

Anna Pastore; Anna Alisi; Gianna Di Giovamberardino; Annalisa Crudele; Sara Ceccarelli; Nadia Panera; Carlo Dionisi-Vici; Valerio Nobili

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of metabolic abnormalities ranging from simple triglyceride accumulation in the hepatocytes to hepatic steatosis with inflammation, ballooning and fibrosis. It has been demonstrated that the pathogenesis of NAFLD involves increased oxidative stress, with consumption of the major cellular antioxidant, glutathione (GSH). Liver has a fundamental role in sulfur compound metabolism, although the data reported on plasma thiols status in NAFLD are conflicting. We recruited 63 NAFLD patients, and we analyzed all plasma thiols, such as homocysteine (Hcy), cysteine (Cys), cysteinylglycine (CysGly) and GSH, by high-performance liquid chromatography (HPLC) with fluorescence detection. Hcy, Cys and CysGly plasma levels increased in NAFLD patients (p < 0.0001); whereas GSH levels were decreased in NAFLD patients when compared to controls (p < 0.0001). On the contrary, patients with steatohepatitis exhibited lower levels of Hcy and Cys than subjects without. Furthermore, a positive correlation was found between Hcy and Cys and the presence of fibrosis in children with NAFLD. Taken together, these data demonstrated a defective hepatic sulfur metabolism in children with NAFLD, and that high levels of Hcy and Cys probably correlates with a pattern of more severe histological liver damage, due to mechanisms that require further studies.


International Journal of Molecular Sciences | 2013

EZH2 Down-Regulation Exacerbates Lipid Accumulation and Inflammation in in Vitro and in Vivo NAFLD

Serena Vella; Daniela Gnani; Annalisa Crudele; Sara Ceccarelli; Cristiano De Stefanis; Stefania Gaspari; Valerio Nobili; Franco Locatelli; Victor E. Marquez; Rossella Rota; Anna Alisi

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent, chronic liver diseases, worldwide. It is a multifactorial disease caused by complex interactions between genetic, epigenetic and environmental factors. Recently, several microRNAs, some of which epigenetically regulated, have been found to be up- and/or down-regulated during NAFLD development. However, in NAFLD, the essential role of the Polycomb Group protein Enhancer of Zeste Homolog 2 (EZH2), which controls the epigenetic silencing of specific genes and/or microRNAs by trimethylating Lys27 on histone H3, still remains unknown. In this study, we demonstrate that the nuclear expression/activity of the EZH2 protein is down-regulated both in livers from NAFLD rats and in the free fatty acid-treated HepG2. The drop in EZH2 is inversely correlated with: (i) lipid accumulation; (ii) the expression of pro-inflammatory markers including TNF-α and TGF-β; and (iii) the expression of miR-200b and miR-155. Consistently, the pharmacological inhibition of EZH2 by 3-Deazaneplanocin A (DZNep) significantly reduces EZH2 expression/activity, while it increases lipid accumulation, inflammatory molecules and microRNAs. In conclusion, the results of this study suggest that the defective activity of EZH2 can enhance the NAFLD development by favouring steatosis and the de-repression of the inflammatory genes and that of specific microRNAs.


Oncotarget | 2015

LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease

Sara Ceccarelli; Nadia Panera; Marco Mina; Daniela Gnani; Cristiano De Stefanis; Annalisa Crudele; C. Rychlicki; Stefania Petrini; Giovannella Bruscalupi; L. Agostinelli; Laura Stronati; Salvatore Cucchiara; Giovanni Musso; Cesare Furlanello; G. Svegliati-Baroni; Valerio Nobili; Anna Alisi

Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH). We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH. In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH.


World Journal of Gastroenterology | 2014

MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease

Nadia Panera; Daniela Gnani; Annalisa Crudele; Sara Ceccarelli; Valerio Nobili; Anna Alisi

Non-alcoholic fatty liver disease (NAFLD) is a multi-faceted condition including simple steatosis alone or associated with inflammation and ballooning (non-alcoholic steatohepatitis) and eventually fibrosis. The NAFLD incidence has increased over the last twenty years becoming the most frequent chronic liver disease in industrialized countries. Obesity, visceral adiposity, insulin resistance, and many other disorders that characterize metabolic syndrome are the major predisposing risk factors for NAFLD. Furthermore, different factors, including genetic background, epigenetic mechanisms and environmental factors, such as diet and physical exercise, contribute to NAFLD development and progression. Several lines of evidence demonstrate that specific microRNAs expression profiles are strongly associated with several pathological conditions including NAFLD. In NAFLD, microRNA deregulation in response to intrinsic genetic or epigenetic factors or environmental factors contributes to metabolic dysfunction. In this review we focused on microRNAs role both as controlled and controllers molecules in NAFLD development and/or their eventual value as non-invasive biomarkers of disease.

Collaboration


Dive into the Sara Ceccarelli's collaboration.

Top Co-Authors

Avatar

Anna Alisi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Valerio Nobili

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nadia Panera

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Daniela Gnani

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Annalisa Crudele

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. De Stefanis

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Stefania Petrini

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Rita De Vito

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge