Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara De Fanti is active.

Publication


Featured researches published by Sara De Fanti.


American Journal of Physical Anthropology | 2013

mtDNA variation in East Africa unravels the history of Afro-Asiatic groups.

Alessio Boattini; Loredana Castrì; Stefania Sarno; Antonella Useli; Manuela Cioffi; Marco Sazzini; Paolo Garagnani; Sara De Fanti; Davide Pettener; Donata Luiselli

East Africa (EA) has witnessed pivotal steps in the history of human evolution. Due to its high environmental and cultural variability, and to the long-term human presence there, the genetic structure of modern EA populations is one of the most complicated puzzles in human diversity worldwide. Similarly, the widespread Afro-Asiatic (AA) linguistic phylum reaches its highest levels of internal differentiation in EA. To disentangle this complex ethno-linguistic pattern, we studied mtDNA variability in 1,671 individuals (452 of which were newly typed) from 30 EA populations and compared our data with those from 40 populations (2970 individuals) from Central and Northern Africa and the Levant, affiliated to the AA phylum. The genetic structure of the studied populations--explored using spatial Principal Component Analysis and Model-based clustering--turned out to be composed of four clusters, each with different geographic distribution and/or linguistic affiliation, and signaling different population events in the history of the region. One cluster is widespread in Ethiopia, where it is associated with different AA-speaking populations, and shows shared ancestry with Semitic-speaking groups from Yemen and Egypt and AA-Chadic-speaking groups from Central Africa. Two clusters included populations from Southern Ethiopia, Kenya and Tanzania. Despite high and recent gene-flow (Bantu, Nilo-Saharan pastoralists), one of them is associated with a more ancient AA-Cushitic stratum. Most North-African and Levantine populations (AA-Berber, AA-Semitic) were grouped in a fourth and more differentiated cluster. We therefore conclude that EA genetic variability, although heavily influenced by migration processes, conserves traces of more ancient strata.


Genes and Nutrition | 2014

Genetic signature of differential sensitivity to stevioside in the Italian population

Davide Risso; Luca Pagani; Andrea Quagliariello; Cristina Giuliani; Sara De Fanti; Marco Sazzini; Donata Luiselli; Sergio Tofanelli

The demand for diet products is continuously increasing, together with that for natural food ingredients. Stevioside and other steviol glycosides extracted from the leaves of the plant Stevia rebaudiana Bertoni are the first natural high-potency sweeteners to be approved for consumption in the United States and the European Union. However, the sweetness of these compounds is generally accompanied by aversive sensations, such as bitter and off-tastes, which may constitute a limit to their consumption. Moreover, consumers’ differences in sensitivity to high-potency sweeteners are well known, as well as difficulties in characterizing their aftertaste. Recently, TAS2R4 and TAS2R14 have been identified as the receptors that mediate the bitter off-taste of steviol glycosides in vitro. In the present study, we demonstrate that TAS2R4 gene polymorphism rs2234001 and TAS2R14 gene polymorphism rs3741843 are functional for stevioside bitterness perception.


Scientific Reports | 2017

Ancient and recent admixture layers in Sicily and Southern Italy trace multiple migration routes along the Mediterranean

Stefania Sarno; Alessio Boattini; Luca Pagani; Marco Sazzini; Sara De Fanti; Andrea Quagliariello; Guido Alberto Gnecchi Ruscone; Etienne Guichard; Graziella Ciani; Eugenio Bortolini; Chiara Barbieri; Elisabetta Cilli; Rosalba Petrilli; Ilia Mikerezi; Luca Sineo; Miguel Vilar; Spencer Wells; Donata Luiselli; Davide Pettener

The Mediterranean shores stretching between Sicily, Southern Italy and the Southern Balkans witnessed a long series of migration processes and cultural exchanges. Accordingly, present-day population diversity is composed by multiple genetic layers, which make the deciphering of different ancestral and historical contributes particularly challenging. We address this issue by genotyping 511 samples from 23 populations of Sicily, Southern Italy, Greece and Albania with the Illumina GenoChip Array, also including new samples from Albanian- and Greek-speaking ethno-linguistic minorities of Southern Italy. Our results reveal a shared Mediterranean genetic continuity, extending from Sicily to Cyprus, where Southern Italian populations appear genetically closer to Greek-speaking islands than to continental Greece. Besides a predominant Neolithic background, we identify traces of Post-Neolithic Levantine- and Caucasus-related ancestries, compatible with maritime Bronze-Age migrations. We argue that these results may have important implications in the cultural history of Europe, such as in the diffusion of some Indo-European languages. Instead, recent historical expansions from North-Eastern Europe account for the observed differentiation of present-day continental Southern Balkan groups. Patterns of IBD-sharing directly reconnect Albanian-speaking Arbereshe with a recent Balkan-source origin, while Greek-speaking communities of Southern Italy cluster with their Italian-speaking neighbours suggesting a long-term history of presence in Southern Italy.


PLOS ONE | 2015

Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia.

Sara De Fanti; Chiara Barbieri; Stefania Sarno; Federica Sevini; Dario Vianello; Erika Tamm; Ene Metspalu; Mannis van Oven; Alexander Hübner; Marco Sazzini; Claudio Franceschi; Davide Pettener; Donata Luiselli

Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent.


Scientific Reports | 2016

Complex interplay between neutral and adaptive evolution shaped differential genomic background and disease susceptibility along the Italian peninsula

Marco Sazzini; Guido Alberto Gnecchi Ruscone; Cristina Giuliani; Stefania Sarno; Andrea Quagliariello; Sara De Fanti; Alessio Boattini; Davide Gentilini; Giovanni Fiorito; Mariagrazia Catanoso; Luigi Boiardi; Stefania Croci; Pierluigi Macchioni; Vilma Mantovani; Anna Maria Di Blasio; Giuseppe Matullo; Carlo Salvarani; Claudio Franceschi; Davide Pettener; Paolo Garagnani; Donata Luiselli

The Italian peninsula has long represented a natural hub for human migrations across the Mediterranean area, being involved in several prehistoric and historical population movements. Coupled with a patchy environmental landscape entailing different ecological/cultural selective pressures, this might have produced peculiar patterns of population structure and local adaptations responsible for heterogeneous genomic background of present-day Italians. To disentangle this complex scenario, genome-wide data from 780 Italian individuals were generated and set into the context of European/Mediterranean genomic diversity by comparison with genotypes from 50 populations. To maximize possibility of pinpointing functional genomic regions that have played adaptive roles during Italian natural history, our survey included also ~250,000 exomic markers and ~20,000 coding/regulatory variants with well-established clinical relevance. This enabled fine-grained dissection of Italian population structure through the identification of clusters of genetically homogeneous provinces and of genomic regions underlying their local adaptations. Description of such patterns disclosed crucial implications for understanding differential susceptibility to some inflammatory/autoimmune disorders, coronary artery disease and type 2 diabetes of diverse Italian subpopulations, suggesting the evolutionary causes that made some of them particularly exposed to the metabolic and immune challenges imposed by dietary and lifestyle shifts that involved western societies in the last centuries.


Human Reproduction | 2017

Intra-individual purifying selection on mitochondrial DNA variants during human oogenesis

Sara De Fanti; Saverio Vicario; Martin Lang; Domenico Simone; Cristina Magli; Donata Luiselli; Luca Gianaroli; Giovanni Romeo

STUDY QUESTION Does selection for mtDNA mutations occur in human oocytes? SUMMARY ANSWER We provide statistical evidence in favor of the existence of purifying selection for mtDNA mutations in human oocytes acting between the expulsion of the first and second polar bodies (PBs). WHAT IS KNOWN ALREADY Several lines of evidence in Metazoa, including humans, indicate that variation within the germline of mitochondrial genomes is under purifying selection. The presence of this internal selection filter in the germline has important consequences for the evolutionary trajectory of mtDNA. However, the nature and localization of this internal filter are still unclear while several hypotheses are proposed in the literature. STUDY DESIGN, SIZE, DURATION In this study, 60 mitochondrial genomes were sequenced from 17 sets of oocytes, first and second PBs, and peripheral blood taken from nine women between 38 and 43 years of age. PARTICIPANTS/MATERIALS, SETTING, METHODS Whole genome amplification was performed only on the single cell samples and Sanger sequencing was performed on amplicons. The comparison of variant profiles between first and second PB sequences showed no difference in substitution rates but displayed instead a sharp difference in pathogenicity scores of protein-coding sequences using three different metrics (MutPred, Polyphen and SNPs&GO). MAIN RESULTS AND THE ROLE OF CHANCE Unlike the first, second PBs showed no significant differences in pathogenic scores with blood and oocyte sequences. This suggests that a filtering mechanism for disadvantageous variants operates during oocyte development between the expulsion of the first and second PB. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The sample size is small and further studies are needed before this approach can be used in clinical practice. Studies on a model organism would allow the sample size to be increased. WIDER IMPLICATIONS OF THE FINDINGS This work opens the way to the study of the correlation between mtDNA mutations, mitochondrial capacity and viability of oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a SISMER grant. Laboratory facilities and skills were freely provided by SISMER, and by the Alma Mater Studiorum, University of Bologna. The authors have no conflict of interest to disclose.


European Journal of Human Genetics | 2016

Shared language, diverging genetic histories: high-resolution analysis of Y-chromosome variability in Calabrian and Sicilian Arbereshe

Stefania Sarno; Sergio Tofanelli; Sara De Fanti; Andrea Quagliariello; Eugenio Bortolini; Gianmarco Ferri; Paolo Anagnostou; Francesca Brisighelli; Cristian Capelli; Giuseppe Tagarelli; Luca Sineo; Donata Luiselli; Alessio Boattini; Davide Pettener

The relationship between genetic and linguistic diversification in human populations has been often explored to interpret some specific issues in human history. The Albanian-speaking minorities of Sicily and Southern Italy (Arbereshe) constitute an important portion of the ethnolinguistic variability of Italy. Their linguistic isolation from neighboring Italian populations and their documented migration history, make such minorities particularly effective for investigating the interplay between cultural, geographic and historical factors. Nevertheless, the extent of Arbereshe genetic relationships with the Balkan homeland and the Italian recipient populations has been only partially investigated. In the present study we address the genetic history of Arbereshe people by combining highly resolved analyses of Y-chromosome lineages and extensive computer simulations. A large set of slow- and fast-evolving molecular markers was typed in different Arbereshe communities from Sicily and Southern Italy (Calabria), as well as in both the putative Balkan source and Italian sink populations. Our results revealed that the considered Arbereshe groups, despite speaking closely related languages and sharing common cultural features, actually experienced diverging genetic histories. The estimated proportions of genetic admixture confirm the tight relationship of Calabrian Arbereshe with modern Albanian populations, in accordance with linguistic hypotheses. On the other hand, population stratification and/or an increased permeability of linguistic and geographic barriers may be hypothesized for Sicilian groups, to account for their partial similarity with Greek populations and their higher levels of local admixture. These processes ultimately resulted in the differential acquisition or preservation of specific paternal lineages by the present-day Arbereshe communities.


PLOS ONE | 2016

Mutation Rates and Discriminating Power for 13 Rapidly-Mutating Y-STRs between Related and Unrelated Individuals.

Alessio Boattini; Stefania Sarno; Carla Bini; Valeria Pesci; Chiara Barbieri; Sara De Fanti; Andrea Quagliariello; Luca Pagani; Qasim Ayub; Gianmarco Ferri; Davide Pettener; Donata Luiselli; Susi Pelotti

Rapidly Mutating Y-STRs (RM Y-STRs) were recently introduced in forensics in order to increase the differentiation of Y-chromosomal profiles even in case of close relatives. We estimate RM Y-STRs mutation rates and their power to discriminate between related individuals by using samples extracted from a wide set of paternal pedigrees and by comparing RM Y-STRs results with those obtained from the Y-filer set. In addition, we tested the ability of RM Y-STRs to discriminate between unrelated individuals carrying the same Y-filer haplotype, using the haplogroup R-M269 (reportedly characterised by a strong resemblance in Y-STR profiles) as a case study. Our results, despite confirming the high mutability of RM Y-STRs, show significantly lower mutation rates than reference germline ones. Consequently, their power to discriminate between related individuals, despite being higher than the one of Y-filer, does not seem to improve significantly the performance of the latter. On the contrary, when considering R-M269 unrelated individuals, RM Y-STRs reveal significant discriminatory power and retain some phylogenetic signal, allowing the correct classification of individuals for some R-M269-derived sub-lineages. These results have important implications not only for forensics, but also for molecular anthropology, suggesting that RM Y-STRs are useful tools for exploring subtle genetic variability within Y-chromosomal haplogroups.


American Journal of Physical Anthropology | 2015

Inferring the genetic history of lactase persistence along the Italian peninsula from a large genomic interval surrounding the LCT gene

Sara De Fanti; Marco Sazzini; Cristina Giuliani; Federica Frazzoni; Stefania Sarno; Alessio Boattini; Elena Marasco; Vilma Mantovani; Claudio Franceschi; Pedro Moral; Paolo Garagnani; Donata Luiselli

OBJECTIVE Although genetic variants related to lactase persistence in European populations were supposed to have firstly undergone positive selection in farmers from the Balkans and Central Europe, demographic and evolutionary dynamics that subsequently shaped the distribution of this adaptive trait across the continent have still to be elucidated. To deepen the knowledge about potential routes of diffusion of lactase persistence to Western Europe we investigated variation at a large genomic region surrounding the LCT gene along the Italian peninsula, a geographical area that played a key role in population movements responsible for Neolithic diffusion across Europe. METHODS By genotyping 40 highly selected SNPs in more than 400 Italian individuals we described gradients of nucleotide and haplotype variation potentially related to lactase persistence and compared them with those observed in several European and Mediterranean human groups. RESULTS Multiple migratory events responsible for earlier introduction of the examined alleles in Italy than in Northern European regions could be invoked. Different demic processes occurred along the western and eastern sides of the peninsula were also inferred via linkage disequilibrium and population structure analyses. CONCLUSION The appreciable genetic continuum observed between people from Northern or Central-Western Italy and Central European populations suggested a local arrival of lactase persistence-related variants mainly via overland routes. On the contrary, diversity of Central-Eastern and Southern Italian groups entailed also gene flow from South-Eastern Mediterranean regions, in accordance to the earlier entrance of the Neolithic in Southern Italy via maritime population movements along the Mediterranean coastlines.


PLOS ONE | 2014

Mitogenomes of polar bodies and corresponding oocytes.

Luca Gianoarli; Donata Luiselli; Anna Maria Crivello; Martin Lang; Anna Pia Ferraretti; Sara De Fanti; M. Cristina Magli; Giovanni Romeo

The objective of the present study was to develop an approach that could assess the chromosomal status and the mitochondrial DNA (mtDNA) content of oocytes and their corresponding polar bodies (PBs) with the goal of obtaining a comparative picture of the segregation process both for nuclear and mtDNA. After Whole Genome Amplification (WGA), sequencing of the whole mitochondrial genome was attempted to analyze the segregation of mutant and wild-type mtDNA during human meiosis. Three triads, composed of oocyte and corresponding PBs, were analyzed and their chromosome status was successfully assessed. The complete mitochondrial genome (mitogenome) was almost entirely sequenced in the oocytes (95.99% compared to 98.43% in blood), while the percentage of sequences obtained in the corresponding PB1 and PB2 was lower (69.70% and 69.04% respectively). The comparison with the mtDNA sequence in blood revealed no changes in the D-loop region for any of the cells of each triad. In the coding region of blood mtDNA and oocyte mtDNA sequences showed full correspondence, whereas all PBs had at least one change with respect to the blood-oocyte pairs. In all, 9 changes were found, either in PB1 or PB2: 4 in MT-ND5, 2 in MT-RNR2, and 1 each in MT-ATP8, MT-ND4, MT-CYTB. The full concordance between oocyte and blood in the 3 triads, and the relegation of changes to PBs, revealed the unexpected coexistence of different variants, giving a refined estimation of mitochondrial heteroplasmy. Should these findings be confirmed by additional data, an active mechanism could be postulated in the oocyte to preserve a condition of ‘normality’.

Collaboration


Dive into the Sara De Fanti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge