Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara E. Gombash is active.

Publication


Featured researches published by Sara E. Gombash.


Neurobiology of Disease | 2010

Stimulation of the Rat Subthalamic Nucleus is Neuroprotective Following Significant Nigral Dopamine Neuron Loss

Anne L. Spieles-Engemann; Michael M. Behbehani; Timothy J. Collier; S.L. Wohlgenant; Kathy Steece-Collier; Katrina L. Paumier; Brian F. Daley; Sara E. Gombash; Lalitha Madhavan; George T. Mandybur; Jack W. Lipton; Brian T. Terpstra; Caryl E. Sortwell

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinsons disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between 2 and 4 weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief.


Journal of Parkinson's disease | 2011

Subthalamic Nucleus Stimulation Increases Brain Derived Neurotrophic Factor in the Nigrostriatal System and Primary Motor Cortex

Anne L. Spieles-Engemann; Kathy Steece-Collier; Michael M. Behbehani; Timothy J. Collier; Susan L. Wohlgenant; Christopher J. Kemp; Allyson Cole-Strauss; Nathan D. Levine; Sara E. Gombash; Valerie B. Thompson; Jack W. Lipton; Caryl E. Sortwell

The mechanisms underlying the effects of long-term deep brain stimulation of the subthalamic nucleus (STN DBS) as a therapy for Parkinsons disease (PD) remain poorly understood. The present study examined whether functionally effective, long-term STN DBS modulates glial cell line-derived neurotrophic factor (GDNF) and/or brain-derived neurotrophic factor (BDNF) in both unlesioned and unilateral 6-hydroxydopamine lesioned rats. Lesioned rats that received two weeks of continuous unilateral STN DBS exhibited significant improvements in parkinsonian motor behaviors in tests of forelimb akinesia and rearing activity. Unilateral STN DBS did not increase GDNF in the nigrostriatal system, primary motor cortex (M1), or hippocampus of unlesioned rats. In contrast, unilateral STN DBS increased BDNF protein 2-3 fold bilaterally in the nigrostriatal system with the location (substantia nigra vs. striatum) dependent upon lesion status. Further, BDNF protein was bilaterally increased in M1 cortex by as much as 2 fold regardless of lesion status. STN DBS did not impact cortical regions that receive less input from the STN. STN DBS also was associated with bilateral increases in BDNF mRNA in the substantia nigra (SN) and internal globus pallidus (GPi). The increase observed in GPi was completely blocked by pretreatment with 5-Methyl-10,11-dihydro-5 H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), suggesting that the activation of N-methyl-D-aspartate (NMDA) receptors was involved in this phenomenon. The upregulation of BDNF associated with long term STN DBS suggest that this therapy may exert pronounced and underappreciated effects on plasticity in the basal ganglia circuitry that may play a role in the symptomatic effects of this therapy as well as support the neuroprotective effect of stimulation documented in this rat model.


PLOS ONE | 2013

Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system.

Sara E. Gombash; Fredric P. Manfredsson; Christopher J. Kemp; Nathan C. Kuhn; Sheila M. Fleming; Ann E. Egan; Laura M. Grant; Michelle R. Ciucci; Jeffrey P. MacKeigan; Caryl E. Sortwell

The discovery of the involvement of alpha-synuclein (α-syn) in Parkinson’s disease (PD) pathogenesis has resulted in the development and use of viral vector-mediated α-syn overexpression rodent models. The goal of these series of experiments was to characterize the neurodegeneration and functional deficits resulting from injection of recombinant adeno-associated virus (rAAV) serotype 2/5-expressing human wildtype α-syn in the rat substantia nigra (SN). Rats were unilaterally injected into two sites in the SN with either rAAV2/5-expressing green fluorescent protein (GFP, 1.2 x 1013) or varying titers (2.2 x 1012, 1.0 x 1013, 5.9 x 1013, or 1.0 x 1014) of rAAV2/5-α-syn. Cohorts of rats were euthanized 4, 8, or 12 weeks following vector injection. The severity of tyrosine hydroxylase immunoreactive (THir) neuron death in the SN pars compacta (SNpc) was dependent on vector titer. An identical magnitude of nigrostriatal degeneration (60-70% SNpc THir neuron degeneration and 40-50% loss of striatal TH expression) was observed four weeks following 1.0 x 1014 titer rAAV2/5-α-syn injection and 8 weeks following 1.0 x 1013 titer rAAV2/5-α-syn injection. THir neuron degeneration was relatively uniform throughout the rostral-caudal axis of the SNpc. Despite equivalent nigrostriatal degeneration between the 1.0 x 1013 and 1.0 x 1014 rAAV2/5-α-syn groups, functional impairment in the cylinder test and the adjusting steps task was only observed in rats with the longer 8 week duration of α-syn expression. Motor impairment in the cylinder task was highly correlated to striatal TH loss. Further, 8 weeks following 5.9 x 1013 rAAV2/5-α-syn injection deficits in ultrasonic vocalizations were observed. In conclusion, our rAAV2/5-α-syn overexpression model demonstrates robust nigrostriatal α-syn overexpression, induces significant nigrostriatal degeneration that is both vector and duration dependent and under specific parameters can result in motor impairment that directly relates to the level of striatal TH denervation.


Human Molecular Genetics | 2015

SMN deficiency disrupts gastrointestinal and enteric nervous system function in mice

Sara E. Gombash; Christopher J. Cowley; Julie A. Fitzgerald; Chitra C. Iyer; David Fried; Vicki L. McGovern; Kent C. Williams; Arthur H.M. Burghes; Fedias L. Christofi; Brian D. Gulbransen; Kevin D. Foust

The 2007 Consensus Statement for Standard of Care in Spinal Muscular Atrophy (SMA) notes that patients suffer from gastroesophageal reflux, constipation and delayed gastric emptying. We used two mouse models of SMA to determine whether functional GI complications are a direct consequence of or are secondary to survival motor neuron (Smn) deficiency. Our results show that despite normal activity levels and food and water intake, Smn deficiency caused constipation, delayed gastric emptying, slow intestinal transit and reduced colonic motility without gross anatomical or histopathological abnormalities. These changes indicate alterations to the intrinsic neural control of gut functions mediated by the enteric nervous system (ENS). Indeed, Smn deficiency led to disrupted ENS signaling to the smooth muscle of the colon but did not cause enteric neuron loss. High-frequency electrical field stimulation (EFS) of distal colon segments produced up to a 10-fold greater contractile response in Smn deficient tissues. EFS responses were not corrected by the addition of a neuronal nitric oxide synthase inhibitor indicating that the increased contractility was due to hyperexcitability and not disinhibition of the circuitry. The GI symptoms observed in mice are similar to those reported in SMA patients. Together these data suggest that ENS cells are susceptible to Smn deficiency and may underlie the patient GI symptoms.


Molecular Therapy | 2012

Striatal Pleiotrophin Overexpression Provides Functional and Morphological Neuroprotection in the 6-Hydroxydopamine Model

Sara E. Gombash; Jack W. Lipton; Timothy J. Collier; Lalitha Madhavan; Kathy Steece-Collier; Allyson Cole-Strauss; Brian T. Terpstra; Anne L. Spieles-Engemann; Brian F. Daley; Susan L. Wohlgenant; Valerie B. Thompson; Fredric P. Manfredsson; Ronald J. Mandel; Caryl E. Sortwell

Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinsons disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult.


Human Molecular Genetics | 2015

Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA

Chitra C. Iyer; Vicki L. McGovern; Jason D. Murray; Sara E. Gombash; Phillip G. Zaworski; Kevin D. Foust; Paul M. L. Janssen; Arthur H.M. Burghes

Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7).


Neurobiology of Aging | 2015

Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain

Nicole K. Polinski; Sara E. Gombash; Fredric P. Manfredsson; Jack W. Lipton; Christopher J. Kemp; Allyson Cole-Strauss; Nicholas M. Kanaan; Kathy Steece-Collier; Nathan C. Kuhn; Susan L. Wohlgenant; Caryl E. Sortwell

Clinical trials are examining the efficacy of viral vector-mediated gene delivery for treating Parkinsons disease. Although viral vector strategies have been successful in preclinical studies, to date clinical trials have disappointed. This may be because of the fact that preclinical studies fail to account for aging. Aging is the single greatest risk factor for developing Parkinsons disease and age alters cellular processes utilized by viral vectors. We hypothesized that the aged brain would be relatively resistant to transduction when compared with the young adult. We examined recombinant adeno-associated virus 2/5-mediated green fluorescent protein (rAAV2/5 GFP) expression in the young adult and aged rat nigrostriatal system. GFP overexpression was produced in both age groups. However, following rAAV2/5 GFP injection to the substantia nigra aged rats displayed 40%-60% less GFP protein in the striatum, regardless of rat strain or duration of expression. Furthermore, aged rats exhibited 40% fewer cells expressing GFP and 4-fold less GFP messenger RNA. rAAV2/5-mediated gene transfer is compromised in the aged rat midbrain, with deficiencies in early steps of transduction leading to significantly less messenger RNA and protein expression.


Methods of Molecular Biology | 2016

Viral Vector-Based Modeling of Neurodegenerative Disorders: Parkinson’s Disease

D. Luke Fischer; Sara E. Gombash; Christopher J. Kemp; Fredric P. Manfredsson; Nicole K. Polinski; Megan F. Duffy; Caryl E. Sortwell

Gene therapy methods are increasingly used to model Parkinsons disease (PD) in animals in an effort to test experimental therapeutics within a more relevant context to disease pathophysiology and neuropathology. We have detailed several criteria that are critical or advantageous to accurately modeling PD in a murine model or in a nonhuman primate. Using these criteria, we then evaluate approaches made to model PD using viral vectors to date, including both adeno-associated viruses and lentiviruses. Lastly, we comment on the consideration of aging as a critical factor for modeling PD.


Human Molecular Genetics | 2015

Corrigendum to SMN deficiency disrupts gastrointestinal and enteric nervous system function in mice [Human Molecular Genetics, 24, 13, (2015) 3847-3860, doi: 10.1093/hmg/ddv127]

Sara E. Gombash; Christopher J. Cowley; Julie A. Fitzgerald; Chitra C. Iyer; David Fried; Vicki L. McGovern; Kent C. Williams; Arthur H.M. Burghes; Fedias L. Christofi; Brian D. Gulbransen; Kevin D. Foust

The 2007 Consensus Statement for Standard of Care in Spinal Muscular Atrophy (SMA) notes that patients suffer from gastroesophageal reflux, constipation and delayed gastric emptying. We used twomousemodels of SMA to determinewhether functional GI complications are a direct consequence of or are secondary to survivalmotor neuron (Smn) deficiency. Our results show that despite normal activity levels and food and water intake, Smn deficiency caused constipation, delayed gastric emptying, slow intestinal transit and reduced colonic motility without gross anatomical or histopathological abnormalities. These changes indicate alterations to the intrinsic neural control of gut functionsmediated by the enteric nervous system (ENS). Indeed, Smn deficiency led to disrupted ENS signaling to the smoothmuscle of the colon but did not cause enteric neuron loss. High-frequencyelectricalfield stimulation (EFS) of distal colon segmentsproducedup to a 10-fold greater contractile response in Smn deficient tissues. EFS responses were not corrected by the addition of a neuronal nitric oxide synthase inhibitor indicating that the increased contractility was due to hyperexcitability and not disinhibition of the circuitry. The GI symptoms observed in mice are similar to those reported in SMA patients. Together these data suggest that ENS cells are susceptible to Smn deficiency and may underlie the patient GI symptoms.


Scientific Reports | 2017

Subthalamic Nucleus Deep Brain Stimulation Does Not Modify the Functional Deficits or Axonopathy Induced by Nigrostriatal α-Synuclein Overexpression

D. Luke Fischer; Fredric P. Manfredsson; Christopher J. Kemp; Allyson Cole-Strauss; Jack W. Lipton; Megan F. Duffy; Nicole K. Polinski; Kathy Steece-Collier; Timothy J. Collier; Sara E. Gombash; Daniel J. Buhlinger; Caryl E. Sortwell

Subthalamic nucleus deep brain stimulation (STN DBS) protects dopaminergic neurons of the substantia nigra pars compacta (SNpc) against 6-OHDA and MPTP. We evaluated STN DBS in a parkinsonian model that displays α-synuclein pathology using unilateral, intranigral injections of recombinant adeno-associated virus pseudotype 2/5 to overexpress wildtype human α-synuclein (rAAV2/5 α-syn). A low titer of rAAV2/5 α-syn results in progressive forelimb asymmetry, loss of striatal dopaminergic terminal density and modest loss of SNpc dopamine neurons after eight weeks, corresponding to robust human-Snca expression and no effect on rat-Snca, Th, Bdnf or Trk2. α-syn overexpression increased phosphorylation of ribosomal protein S6 (p-rpS6) in SNpc neurons, a readout of trkB activation. Rats received intranigral injections of rAAV2/5 α-syn and three weeks later received four weeks of STN DBS or electrode implantation that remained inactive. STN DBS did not protect against α-syn-mediated deficits in forelimb akinesia, striatal denervation or loss of SNpc neuron, nor did STN DBS elevate p-rpS6 levels further. ON stimulation, forelimb asymmetry was exacerbated, indicating α-syn overexpression-mediated neurotransmission deficits. These results demonstrate that STN DBS does not protect the nigrostriatal system against α-syn overexpression-mediated toxicity. Whether STN DBS can be protective in other models of synucleinopathy is unknown.

Collaboration


Dive into the Sara E. Gombash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack W. Lipton

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge