Sara F. Michaliszyn
Youngstown State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara F. Michaliszyn.
Diabetes Care | 2012
Stephanie J. Mihalik; Sara F. Michaliszyn; Javier de las Heras; Fida Bacha; SoJung Lee; Donald H. Chace; Victor R. DeJesus; Jerry Vockley; Silva Arslanian
OBJECTIVE We compared acylcarnitine (AcylCN) species, common amino acid and fat oxidation (FOX) byproducts, and plasma amino acids in normal weight (NW; n = 39), obese (OB; n = 64), and type 2 diabetic (n = 17) adolescents. RESEARCH DESIGN AND METHODS Fasting plasma was analyzed by tandem mass spectrometry, body composition by dual energy X-ray absorptiometry and computed tomography, and total-body lipolysis and substrate oxidation by [2H5]glycerol and indirect calorimetry, respectively. In vivo insulin sensitivity (IS) was assessed with a 3-h hyperinsulinemic-euglycemic clamp. RESULTS Long-chain AcylCNs (C18:2-CN to C14:0-CN) were similar among the three groups. Medium- to short-chain AcylCNs (except C8 and C10) were significantly lower in type 2 diabetes compared with NW, and when compared with OB, C2-, C6-, and C10-CN were lower. Amino acid concentrations were lower in type 2 diabetes compared with NW. Fasting lipolysis and FOX were higher in OB and type 2 diabetes compared with NW, and the negative association of FOX to C10:1 disappeared after controlling for adiposity, Tanner stage, and sex. IS was lower in OB and type 2 diabetes with positive associations between IS and arginine, histidine, and serine after adjusting for adiposity, Tanner stage, and sex. CONCLUSIONS These metabolomics results, together with the increased rates of in vivo FOX, are not supportive of defective fatty acid or amino acid metabolism in obesity and type 2 diabetes in youth. Such observations are consistent with early adaptive metabolic plasticity in youth, which over time—with continued obesity and aging—may become dysfunctional, as observed in adults.
The Journal of Clinical Endocrinology and Metabolism | 2012
Sara F. Michaliszyn; Lindsey A. Sjaarda; Stephanie J. Mihalik; SoJung Lee; Fida Bacha; Donald H. Chace; Víctor R. De Jesús; Jerry Vockley; Silva Arslanian
CONTEXT In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). OBJECTIVE The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired β-cell function relative to insulin sensitivity [i.e. disposition index (DI)], a predictor of T2DM development. DESIGN, SETTING, AND PARTICIPANTS Metabolomic analysis for fasting plasma AAs was performed by tandem mass spectrometry in 139 normal-weight and obese adolescents with and without dysglycemia. First-phase insulin secretion was evaluated by a hyperglycemic (∼225 mg/dl) clamp and insulin sensitivity by a hyperinsulinemic-euglycemic clamp. DI was calculated as the product of first-phase insulin and insulin sensitivity. RESULTS DI was positively associated with branched-chain AAs (leucine/isoleucine and valine; r = 0.27 and 0.29, P = 0.001), neutrally transported AAs (phenylalanine and methionine; r = 0.30 and 0.35, P < 0.001), basic AAs (histidine and arginine; r = 0.28 and 0.23, P ≤ 0.007), serine (r = 0.35, P < 0.001), glycine (r = 0.26, P = 0.002), and branched-chain AAs-derived intermediates C3, C4, and C5 acylcarnitine (range r = 0.18-0.19, P ≤ 0.04). CONCLUSION In youth, increased plasma AA concentrations are not associated with a heightened metabolic risk profile for T2DM; rather, they are positively associated with β-cell function relative to insulin sensitivity. These contrasting observations between adults and youth may be a reflection of developmental differences along the lifespan dependent on the combined impact of the aging process together with the impact of progressive obesity.
Diabetes | 2014
Sara F. Michaliszyn; Andrea Mari; SoJung Lee; Fida Bacha; Hala Tfayli; Lama Farchoukh; Ele Ferrannini; Silva Arslanian
Using the hyperglycemic and euglycemic clamp, we demonstrated impaired β-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)-modeled β-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. β-Cell function parameters were derived from established mathematical models yielding β-cell glucose sensitivity (βCGS), rate sensitivity, and insulin sensitivity in 255 obese adolescents (173 with normal glucose tolerance [NGT], 48 with impaired glucose tolerance [IGT], and 34 with type 2 diabetes [T2D]). The incretin effect was calculated as the ratio of the OGTT-βCGS to the 2-h hyperglycemic clamp-βCGS. Incretin and glucagon concentrations were measured during the OGTT. Compared with NGT, βCGS was 30 and 65% lower in youth with IGT and T2D, respectively; rate sensitivity was 40% lower in T2D. Youth with IGT or T2D had 32 and 38% reduced incretin effect compared with NGT in the face of similar changes in GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) in response to oral glucose. We conclude that glucose sensitivity deteriorates progressively in obese youth across the spectrum of glucose tolerance in association with impairment in incretin effect without reduction in GLP-1 or GIP, similar to that seen in adult dysglycemia.
Diabetes Care | 2012
Lindsey A. Sjaarda; Sara F. Michaliszyn; SoJung Lee; Hala Tfayli; Fida Bacha; Lama Farchoukh; Silva Arslanian
OBJECTIVE The recommended HbA1c diagnostic categories remain controversial and their utility in doubt in pediatrics. We hypothesized that alterations in the pathophysiologic mechanisms of type 2 diabetes may be evident in the American Diabetes Association recommended at-risk/prediabetes category (HbA1c 5.7 to <6.5%). RESEARCH DESIGN AND METHODS We compared in vivo hepatic and peripheral insulin sensitivity by [6,6-2H2] glucose and a 3-h hyperinsulinemic-euglycemic clamp and β-cell function by a 2-h hyperglycemic clamp (∼225 mg/dL) in overweight/obese (BMI ≥85th percentile) adolescents with prediabetes (HbA1c 5.7 to <6.5%) (n = 160) to those with normal HbA1c (<5.7%) (n = 44). β-Cell function was expressed relative to insulin sensitivity (i.e., the disposition index = insulin sensitivity × first-phase insulin). RESULTS In the prediabetes versus normal HbA1c category, fasting glucose, insulin, and oral glucose tolerance test (OGTT) area under the curve for glucose and insulin were significantly higher; hepatic and peripheral insulin sensitivity were lower; and β-cell function relative to insulin sensitivity was lower (366 ± 48 vs. 524 ± 25 mg/kg/min; P = 0.005). A total of 27% of youth in the normal HbA1c category and 41% in the prediabetes HbA1c category had dysglycemia (impaired fasting glucose and/or impaired glucose tolerance) by a 2-h OGTT. CONCLUSIONS Overweight/obese adolescents with HbA1c in the at-risk/prediabetes category demonstrate impaired β-cell function relative to insulin sensitivity, a metabolic marker for heightened risk of type 2 diabetes. Thus, HbA1c may be a suitable screening tool in large-scale epidemiological observational and/or interventional studies examining the progression or reversal of type 2 diabetes risk.
Diabetes Care | 2016
Joon Young Kim; Sara F. Michaliszyn; Alexis Nasr; So Jung Lee; Hala Tfayli; Tamara S. Hannon; Kara S. Hughan; Fida Bacha; Silva Arslanian
OBJECTIVE The shape of the glucose response curve during an oral glucose tolerance test (OGTT), monophasic versus biphasic, identifies physiologically distinct groups of individuals with differences in insulin secretion and sensitivity. We aimed to verify the value of the OGTT-glucose response curve against more sensitive clamp-measured biomarkers of type 2 diabetes risk, and to examine incretin/pancreatic hormones and free fatty acid associations in these curve phenotypes in obese adolescents without diabetes. RESEARCH DESIGN AND METHODS A total of 277 obese adolescents without diabetes completed a 2-h OGTT and were categorized to either a monophasic or a biphasic group. Body composition, abdominal adipose tissue, OGTT-based metabolic parameters, and incretin/pancreatic hormone levels were examined. A subset of 106 participants had both hyperinsulinemic-euglycemic and hyperglycemic clamps to measure in vivo insulin sensitivity, insulin secretion, and β-cell function relative to insulin sensitivity. RESULTS Despite similar fasting and 2-h glucose and insulin concentrations, the monophasic group had significantly higher glucose, insulin, C-peptide, and free fatty acid OGTT areas under the curve compared with the biphasic group, with no differences in levels of glucagon, total glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, and pancreatic polypeptide. Furthermore, the monophasic group had significantly lower in vivo hepatic and peripheral insulin sensitivity, lack of compensatory first and second phase insulin secretion, and impaired β-cell function relative to insulin sensitivity. CONCLUSIONS In obese youth without diabetes, the risk imparted by the monophasic glucose curve compared with biphasic glucose curve, independent of fasting and 2-h glucose and insulin concentrations, is reflected in lower insulin sensitivity and poorer β-cell function, which are two major pathophysiological biomarkers of type 2 diabetes in youth.
Fertility and Sterility | 2013
Sara F. Michaliszyn; SoJung Lee; Hala Tfayli; Silva Arslanian
OBJECTIVE To investigate the relationship between liver fat and in vivo insulin sensitivity, body composition, abdominal adiposity, and lipid metabolism in obese adolescent girls with polycystic ovary syndrome (PCOS). DESIGN Cross-sectional case-control study. SETTING Research center. PATIENT(S) Thirty Tanner stage V obese girls with PCOS. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Liver fat, abdominal adiposity, in vivo insulin-stimulated glucose disposal, whole-body lipolysis, fat oxidation, lipoprotein particle size and concentration, and liver enzymes (alanine aminotransferase and aspartate aminotransferase). Fatty liver index <1 is indicative of fatty liver. RESULT(S) Fatty liver was present in 6.7% of the individuals (6.7%). Levels of alanine aminotransferase and aspartate aminotransferase were not different between those with fatty liver vs. without. Fatty liver index was associated with age (r = -0.53), body mass index (r = -0.41), total (r = -0.43) and subcutaneous (r = -0.41) abdominal adiposity, insulin-stimulated glucose disposal (r = 0.36), and small, medium small, and very small low-density lipoprotein concentrations (r ≥ -0.43). In a multiple regression analysis, age, total T, race, and insulin-stimulated glucose disposal explained 43% of the variance (R(2) = 0.43) in fatty liver index, with age (R(2) = 0.28) and total T (R(2) = 0.11) being independent contributors. CONCLUSION(S) Liver fat is associated with increasing age, even in the narrow adolescent age range, increasing abdominal adiposity, worsening insulin sensitivity, and dyslipoproteinemia in obese adolescent girls with PCOS. Targeting these abnormalities early in the course of PCOS may halt future nonalcoholic fatty liver disease in adulthood.
The Journal of Clinical Endocrinology and Metabolism | 2013
Kara S. Hughan; Riccardo C. Bonadonna; SoJung Lee; Sara F. Michaliszyn; Silva Arslanian
OBJECTIVE Overweight/obese (OW/OB) African American (AA) adolescents have a more diabetogenic insulin secretion/sensitivity pattern compared with their American white (AW) peers. The present study investigated β-cell lipotoxicity to test whether increased free fatty acid (FFA) levels result in greater β-cell dysfunction in AA vs AW OW/OB adolescents. RESEARCH DESIGN AND METHODS Glucose-stimulated insulin secretion was modeled, from glucose and C-peptide concentrations during a 2-hour hyperglycemic (225 mg/dL) clamp in 22 AA and 24 AW OW/OB adolescents, on 2 occasions after a 12-hour overnight infusion of either normal saline or intralipid (IL) in a random sequence. β-Cell function relative to insulin sensitivity, the disposition index (DI), was examined during normal saline and IL conditions. Substrate oxidation was evaluated with indirect calorimetry and body composition and abdominal adiposity with dual-energy X-ray absorptiometry and magnetic resonance imaging at L4-L5, respectively. RESULTS Age, sex, body mass index, total and sc adiposity were similar between racial groups, but visceral adiposity was significantly lower in AAs. During IL infusion, FFAs and fat oxidation increased and insulin sensitivity decreased similarly in AAs and AWs. β-Cell glucose sensitivity of first- and second-phase insulin secretion did not change significantly during IL infusion in either group, but DI in each phase decreased significantly and similarly in AAs and AWs. CONCLUSIONS Overweight/obese AA and AW adolescents respond to an overnight fat infusion with significant declines in insulin sensitivity, DI, and β-cell function relative to insulin sensitivity, suggestive of β-cell lipotoxicity. However, contrary to our hypothesis, there does not seem to be a race differential in β-cell lipotoxicity. Longer durations of FFA elevation may unravel such race-related contrasts.
Diabetes | 2013
Sara F. Michaliszyn; Riccardo C. Bonadonna; Lindsey A. Sjaarda; SoJung Lee; Lama Farchoukh; Silva Arslanian
Prepubertal African American (AA) youth compared with their Caucasian (C) peers have higher insulin secretion, which correlates positively with free fatty acid (FFA) concentration. In our continued efforts to explain the racial disparity in insulinemia, and because FFAs modulate insulin secretion, we hypothesized that AA youth would have a greater response to FFA-induced β-cell insulin secretion than C youth. We compared the short-term effects of FFA elevation on fasting and glucose-stimulated C-peptide–modeled insulin secretion in prepubertal normal-weight AA versus C peers during a 2-h hyperglycemic clamp (12.5 mmol/L) on two occasions: 1) infusion of normal saline and 2) infusion of 20% intralipid (IL). During IL infusion, insulin sensitivity (IS) declined comparably in AA and C youth. Glucose sensitivity of first- and second-phase insulin secretion showed a significant condition × race interaction being higher in AA youth. Disposition index, β-cell function relative to IS, declined with IL infusion in AA and C youth, with a significantly greater decrease in Cs compared with AAs. In conclusion, AA and C prepubertal youth both demonstrated a decline in β-cell function relative to IS during IL infusion, indicative of acute lipotoxicity. The greater decline in C youth compared with AAs may suggest that C youth are more susceptible to β-cell lipotoxicity than AA youth, or alternatively, that AA youth are hypersensitive to FFA stimulation of β-cell insulin secretion, consistent with our theory.
Pediatric Diabetes | 2017
Sara F. Michaliszyn; SoJung Lee; Fida Bacha; Hala Tfayli; Lama Farchoukh; Andrea Mari; Ele Ferrannini; Silva Arslanian
Black youth are at higher risk for type 2 diabetes (T2D) than their White peers. Previously we demonstrated that for the same degree of insulin sensitivity, Black youth have an upregulated β‐cell function and insulin hypersecretion, in response to intravenous (iv) glucose, compared with Whites. To investigate if the same holds true during an oral glucose challenge and because of the important role of glucagon‐like peptide 1 (GLP‐1) and glucose‐dependent insulinotropic polypeptide (GIP) in augmenting insulin secretion, we examined β‐cell function and incretin hormones in 85 Black and 78 White obese adolescents, with normal glucose tolerance (NGT), during a 2‐h oral glucose tolerance test (OGTT) with mathematical modeling of plasma glucose and C‐peptide concentrations to assess β‐cell glucose sensitivity (βCGS), rate sensitivity, potentiation factor, and insulin sensitivity. Incretin, pancreatic polypeptide, and glucagon concentrations were measured during the OGTT. Black obese youth had a heightened early insulin secretion together with significantly greater βCGS, rate sensitivity, and potentiation factor compared with Whites, with no differences in incretin and glucagon concentrations. Basal and stimulated insulin clearance was lower (p = 0.001) in Black vs. White youth. In conclusion, during an OGTT Black obese youth with NGT demonstrate a pronounced early insulin secretion jointly with heightened β‐cell glucose sensitivity, rate sensitivity, and potentiation factor. These racial disparities in β‐cell function and the pathophysiological components of T2D are unlikely to be attributed to incretin hormones and remain to be investigated further to explain the metabolic basis for the enhanced risk of T2D in back youth.
Diabetes | 2017
Joon Young Kim; Alexis Nasr; Hala Tfayli; Fida Bacha; Sara F. Michaliszyn; Silva Arslanian
Despite evidence of insulin resistance and β-cell dysfunction in glucose metabolism in youth with prediabetes, the relationship between adipose tissue insulin sensitivity (ATIS) and β-cell function remains unknown. We investigated whole-body lipolysis, ATIS, and β-cell function relative to ATIS (adipose disposition index [DI]) in obese youth with impaired glucose tolerance (IGT) versus normal glucose tolerance (NGT). Whole-body lipolysis (glycerol appearance rate [GlyRa], [2H5]glycerol at baseline and during a hyperinsulinemic-euglycemic clamp), lipid oxidation (indirect calorimetry), insulin secretion (2-h hyperglycemic clamp), and body composition (dual-energy X-ray absorptiometry) were examined. Adipose DI was calculated as ATIS: (1/GlyRa × fasting insulin) × first-phase insulin secretion. Despite similar percent body fat, youth with IGT versus NGT had higher GlyRa, lower ATIS at baseline and during hyperinsulinemia, and higher lipid oxidation. Adipose DI was ∼43% lower in youth with IGT and correlated positively with glucose DI. The lower ATIS and diminished adipose DI in IGT versus NGT is in line with the compromised glucose metabolism reflected in impaired β-cell function relative to peripheral insulin resistance. We conclude that youth with IGT manifest a global decline in insulin sensitivity, including impaired insulin action in suppressing lipolysis and lipid oxidation, accompanied by β-cell dysfunction in fat and glucose metabolism, enhancing their risk of type 2 diabetes.