Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Hall is active.

Publication


Featured researches published by Sara Hall.


Brain Behavior and Immunity | 2013

Cerebrospinal fluid inflammatory markers in Parkinson’s disease – Associations with depression, fatigue, and cognitive impairment ☆

Daniel Lindqvist; Sara Hall; Yulia Surova; Henrietta M. Nielsen; Shorena Janelidze; Lena Brundin; Oskar Hansson

Neuroinflammation may be involved in the pathophysiology of Parkinsons disease (PD) and specifically in non-motor symptoms such as depression, fatigue and cognitive impairment. The aim of this study was to measure inflammatory markers in cerebrospinal fluid (CSF) samples from PD patients and a reference group, and to investigate correlations between non-motor symptoms and inflammation. We quantified C-reactive protein (CRP), interleukin-6, tumor necrosis factor-alpha, eotaxin, interferon gamma-induced protein-10, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein 1-β in CSF samples from PD patients (N=87) and the reference group (N=33). Sixteen of the PD patients had a dementia diagnosis (PDD). We assessed symptoms of fatigue, depression, anxiety and cognitive function using the Functional Assessment of Chronic Illness Therapy-Fatigue, the Hospital Anxiety and Depression Scale, and the Mini Mental State Examination, respectively. There were no significant differences in mean levels of inflammatory markers between PD patients and the reference group. After controlling for age, gender and somatic illness, patients with PDD had significantly higher levels of CRP compared to non-demented PD patients (p=0.032) and the reference group (p=0.026). Increased levels of inflammatory markers in CSF were significantly associated with more severe symptoms of depression, anxiety, fatigue, and cognition in the entire PD group. After controlling for PD duration, age, gender, somatic illness and dementia diagnosis, high CRP levels were significantly associated with more severe symptoms of depression (p=0.010) and fatigue (p=0.008), and high MCP-1 levels were significantly associated with more severe symptoms of depression (p=0.032). Our results indicate that non-motor features of PD such as depression, fatigue, and cognitive impairment are associated with higher CSF levels of inflammatory markers.


PLOS ONE | 2012

Non-Motor Symptoms in Patients with Parkinson's Disease - Correlations with Inflammatory Cytokines in Serum

Daniel Lindqvist; Eli Kaufman; Lena Brundin; Sara Hall; Yulia Surova; Oskar Hansson

Background Parkinson’s Disease (PD) is the second most common neurodegenerative disorder of the central nervous system. Motor symptoms are the focus of pharmacotherapy, yet non-motor features of the disease (e.g. fatigue, mood disturbances, sleep disturbances and symptoms of anxiety) are both common and disabling for the patient. The pathophysiological mechanisms behind the non-motor symptoms in PD are yet to be untangled. The main objective of this study was to investigate associations between pro-inflammatory substances and non-motor symptoms in patients with PD. Methods and Materials We measured C-reactive protein, interleukin (IL)-6, soluble IL-2 receptor (sIL-2R) and tumor necrosis factor-α (TNF-α) in blood samples from PD patients (n = 86) and healthy controls (n = 40). Symptoms of fatigue, depression, anxiety and sleeping difficulties were assessed using the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT), the Hospital Anxiety and Depression Scale (HAD), and the Scales for Outcome in PD-Sleep Scale respectively. Results IL-6 was significantly higher in PD patients than in healthy controls. Compared to healthy controls, PD patients displayed significantly higher mean scores on HAD and lower scores on FACIT, thus indicating more severe symptoms as measured with these scales. Within the PD sample, high levels of both sIL-2R and TNF-α were significantly associated with more severe symptoms assessed by means of FACIT and HAD (depression and anxiety subscales). SIL-2-R levels were able to significantly predict FACIT and HAD scores after the effects of age, gender, anti-parkinsonian medications, and severity of motor symptoms were controlled for. Discussion We suggest that non-motor symptoms in PD patients, such as fatigue and depressive symptoms, might be generated via inflammatory mechanisms. This knowledge might contribute to the development of novel treatment options in PD, specifically targeting non-motor symptoms.


Neurology | 2015

CSF biomarkers and clinical progression of Parkinson disease

Sara Hall; Yulia Surova; Annika Öhrfelt; Henrik Zetterberg; Daniel Lindqvist; Oskar Hansson

Objective: To investigate whether certain CSF biomarkers at baseline can predict future progression of motor symptoms and cognitive decline in patients with Parkinson disease (PD). Methods: Patients and controls were recruited from hospitals in southern Sweden as part of the prospective and longitudinal Swedish BioFinder Study. In the present study, we included 42 patients with PD and 69 controls who had clinical assessment and lumbar puncture at baseline. Baseline CSF samples were analyzed for α-synuclein (αSyn), β-amyloid 1–42 (Aβ42), tau, phosphorylated tau, and neurofilament light. Associations between CSF markers at baseline and change in clinical characteristics after 2 years of follow-up were investigated using multivariate models adjusting for age, sex, disease duration, and levodopa-equivalent daily dose. Results: Higher levels of αSyn within the PD group were associated with progression of motor symptoms and cognitive decline over 2 years, indicated by significant relationships between αSyn and change in Hoehn and Yahr (β = 0.394, p = 0.043), Unified Parkinsons Disease Rating Scale, Part III (UPDRS-III) (β = 0.449, p = 0.013), Timed Up and Go (β = 0.406, p = 0.023), and A Quick Test of Cognitive Speed (β = 0.423, p = 0.018). Lower levels of Aβ42 were associated with worsening of performance on delayed memory recall (F = 5.834, p = 0.022). Finally, high levels of phosphorylated tau were associated with worsening in motor symptoms (UPDRS-III, β = 0.350, p = 0.045; Hoehn and Yahr, β = 0.366, p = 0.038). Conclusion: We found evidence of a link between higher levels of αSyn at baseline and worsening of motor symptoms and cognitive speed over 2 years in PD. Increased αSyn might be a marker of more intense synaptic degeneration in PD. The results indicate that cortical amyloid pathology (low CSF Aβ42) is associated with memory decline.


PLOS ONE | 2013

Low CSF Levels of Both α-Synuclein and the α-Synuclein Cleaving Enzyme Neurosin in Patients with Synucleinopathy.

Malin Wennström; Yulia Surova; Sara Hall; Christer Nilsson; Lennart Minthon; Fredrik Boström; Oskar Hansson; Henrietta M. Nielsen

Neurosin is a protease that in vitro degrades α-synuclein, the main constituent of Lewy bodies found in brains of patients with synucleinopathy including Parkinsons disease (PD) and dementia with Lewy bodies (DLB). Several studies have reported reduced cerebrospinal fluid (CSF) levels of α-synuclein in synucleinopathy patients and recent data also proposes a significant role of α-synuclein in the pathophysiology of Alzheimers disease (AD). To investigate potential links between neurosin and its substrate α-synuclein in vivo we used a commercially available sandwich ELISA and an in-house developed direct ELISA to quantify CSF levels of α-synuclein and neurosin in patients diagnosed with DLB, PD and PD dementia (PDD) versus AD patients and non-demented controls. We found that patients with synucleinopathy displayed lower CSF levels of neurosin and α-synuclein compared to controls and AD patients. In contrast, AD patients demonstrated significantly increased CSF α-synuclein but similar neurosin levels compared to non-demented controls. Further, CSF neurosin and α-synuclein concentrations were positively associated in controls, PD and PDD patients and both proteins were highly correlated to CSF levels of phosphorylated tau in all investigated groups. We observed no effect of gender or presence of the apolipoprotein Eε4 allele on neither neurosin or α-synuclein CSF levels. In concordance with the current literature our study demonstrates decreased CSF levels of α-synuclein in synucleinopathy patients versus AD patients and controls. Importantly, decreased α-synuclein levels in patients with synucleinopathy appear linked to low levels of the α-synuclein cleaving enzyme neurosin. In contrast, elevated levels of α-synuclein in AD patients were not related to any altered CSF neurosin levels. Thus, altered CSF levels of α-synuclein and neurosin in patients with synucleinopathy versus AD may not only mirror disease-specific neuropathological mechanisms but may also serve as fit candidates for future biomarker studies aiming at identifying specific markers of synucleinopathy.


Alzheimer's Research & Therapy | 2014

Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease

Oskar Hansson; Sara Hall; Annika Öhrfelt; Henrik Zetterberg; Kaj Blennow; Lennart Minthon; Katarina Nägga; Elisabet Londos; Shiji Varghese; Nour K. Majbour; Abdulmonem Al-Hayani; Omar El-Agnaf

IntroductionThe objective was to study whether α-synuclein oligomers are altered in the cerebrospinal fluid (CSF) of patients with dementia, including Parkinson disease with dementia (PDD), dementia with Lewy bodies (DLB), and Alzheimer disease (AD), compared with age-matched controls.MethodsIn total, 247 CSF samples were assessed in this study, including 71 patients with DLB, 30 patients with PDD, 48 patients with AD, and 98 healthy age-matched controls. Both total and oligomeric α-synuclein levels were evaluated by using well-established immunoassays.ResultsThe levels of α-synuclein oligomers in the CSF were increased in patients with PDD compared with the controls (P < 0.05), but not in patients with DLB compared with controls. Interestingly, the levels of α-synuclein oligomers in the CSF were also significantly higher in patients with PDD (P < 0.01) and DLB (P < 0.05) compared with patients with AD. The levels of CSF α-synuclein oligomers and the ratio of oligomeric/total-α-synuclein could distinguish DLB or PDD patients from AD patients, with areas under the curves (AUCs) of 0.64 and 0.75, respectively. In addition, total-α-synuclein alone could distinguish DLB or PDD patients from AD patients, with an AUC of 0.80.ConclusionsThe levels of α-synuclein oligomers were increased in the CSF from α-synucleinopathy patients with dementia compared with AD cases.


Neurology | 2017

Blood-based NfL : A biomarker for differential diagnosis of parkinsonian disorder

Oskar Hansson; Shorena Janelidze; Sara Hall; Nadia Magdalinou; Andrew J. Lees; Ulf Andreasson; Niklas Norgren; Jan Linder; Lars Forsgren; Radu Constantinescu; Henrik Zetterberg; Kaj Blennow

Objective: To determine if blood neurofilament light chain (NfL) protein can discriminate between Parkinson disease (PD) and atypical parkinsonian disorders (APD) with equally high diagnostic accuracy as CSF NfL, and can therefore improve the diagnostic workup of parkinsonian disorders. Methods: The study included 3 independent prospective cohorts: the Lund (n = 278) and London (n = 117) cohorts, comprising healthy controls and patients with PD, progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy (MSA), as well as an early disease cohort (n = 109) of patients with PD, PSP, MSA, or CBS with disease duration ≤3 years. Blood NfL concentration was measured using an ultrasensitive single molecule array (Simoa) method, and the diagnostic accuracy to distinguish PD from APD was investigated. Results: We found strong correlations between blood and CSF concentrations of NfL (ρ ≥ 0.73–0.84, p ≤ 0.001). Blood NfL was increased in patients with MSA, PSP, and CBS (i.e., all APD groups) when compared to patients with PD as well as healthy controls in all cohorts (p < 0.001). Furthermore, in the Lund cohort, blood NfL could accurately distinguish PD from APD (area under the curve [AUC] 0.91) with similar results in both the London cohort (AUC 0.85) and the early disease cohort (AUC 0.81). Conclusions: Quantification of blood NfL concentration can be used to distinguish PD from APD. Blood-based NfL might consequently be included in the diagnostic workup of patients with parkinsonian symptoms in both primary care and specialized clinics. Classification of evidence: This study provides Class III evidence that blood NfL levels discriminate between PD and APD.


Neurology | 2015

Increased CSF biomarkers of angiogenesis in Parkinson disease.

Shorena Janelidze; Daniel Lindqvist; Veronica Francardo; Sara Hall; Henrik Zetterberg; Kaj Blennow; Charles H. Adler; Thomas G. Beach; Geidy Serrano; Danielle van Westen; Elisabet Londos; M. Angela Cenci; Oskar Hansson

Objective: To study biomarkers of angiogenesis in Parkinson disease (PD), and how these are associated with clinical characteristics, blood–brain barrier (BBB) permeability, and cerebrovascular disease. Methods: In this cross-sectional analysis, 38 elderly controls and 100 patients with PD (82 without dementia and 18 with dementia) were included from the prospective Swedish BioFinder study. CSF samples were analyzed for the angiogenesis biomarkers vascular endothelial growth factor (VEGF); its receptors, VEGFR-1 and VEGFR-2; placental growth factor (PlGF); angiopoietin 2 (Ang2); and interleukin-8. BBB permeability, white matter lesions (WMLs), and cerebral microbleeds (CMB) were assessed. CSF angiogenesis biomarkers were also measured in 2 validation cohorts: (1) 64 controls and 87 patients with PD with dementia; and (2) 35 controls and 93 patients with neuropathologically confirmed diagnosis of PD with and without dementia. Results: Patients with PD without dementia displayed higher CSF levels of VEGF, PlGF, and sVEGFR-2, and lower levels of Ang2, compared to controls. Similar alterations in VEGF, PlGF, and Ang2 levels were observed in patients with PD with dementia. Angiogenesis markers were associated with gait difficulties and orthostatic hypotension as well as with more pronounced BBB permeability, WMLs, and CMB. Moreover, higher levels of VEGF and PlGF levels were associated with increased CSF levels of neurofilament light (a marker of neurodegeneration) and monocyte chemotactic protein–1 (a marker of glial activation). The main results were validated in the 2 additional cohorts. Conclusions: CSF biomarkers of angiogenesis are increased in PD, and they are associated with gait difficulties, BBB dysfunction, WMLs, and CMB. Abnormal angiogenesis may be important in PD pathogenesis and contribute to dopa-resistant symptoms.


Movement Disorders | 2016

Longitudinal Measurements of Cerebrospinal Fluid Biomarkers in Parkinson's Disease.

Sara Hall; Yulia Surova; Annika Öhrfelt; Kaj Blennow; Henrik Zetterberg; Oskar Hansson

The purpose of this study was to investigate whether cerebrospinal fluid (CSF) levels of tau, phosphorylated tau, β‐amyloid42, α‐synuclein, neurofilament light, and YKL‐40 change over time and if changes correlate with motor progression and/or cognitive decline in patients with PD and controls.


PLOS ONE | 2015

The Inflammatory Marker YKL-40 Is Elevated in Cerebrospinal Fluid from Patients with Alzheimer’s but Not Parkinson’s Disease or Dementia with Lewy Bodies

Malin Wennström; Yulia Surova; Sara Hall; Christer Nilsson; Lennart Minthon; Oskar Hansson; Henrietta M. Nielsen

A major difference in the revised diagnostic criteria for Alzheimer’s disease (AD) is the incorporation of biomarkers to support a clinical diagnosis and allow the identification of preclinical AD due to AD neuropathological processes. However, AD-specific fluid biomarkers which specifically distinguish clinical AD dementia from other dementia disorders are still missing. Here we aimed to evaluate the disease-specificity of increased YKL-40 levels in cerebrospinal fluid (CSF) from AD patients with mild to moderate dementia (n = 49) versus Parkinson’s disease (PD) (n = 61) and dementia with Lewy bodies (DLB) patients (n = 36), and non-demented controls (n = 44). Second we aimed to investigate whether altered YKL-40 levels are associated with CSF levels of other inflammation-associated molecules. When correcting for age, AD patients exhibited 21.3%, 27.7% and 38.8% higher YKL-40 levels compared to non-demented controls (p = 0.0283), DLB (p = 0.0027) and PD patients (p<0.0001). The AD-associated increase in YKL-40 was not associated with CSF P-tau, T-tau or Aβ42. No relationship between increased YKL-40 and levels of the astrocytic marker glial-fibrillary acidic protein (GFAP), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1) and interferon gamma-induced protein 10 (IP-10) could be identified. Our results confirm previous reports of an age-associated increased in CSF YKL-40 levels and further demonstrate increased CSF YKL-40 in AD patients versus non-demented controls and patients with DLB or PD. The increase in YKL-40 levels in the AD patients was unrelated to the established CSF AD biomarkers and the inflammatory markers GFAP, MCP-1, IP-10 and IL-8, proposing YKL-40 as a marker of yet to be identified AD-related pathological processes.


PLOS ONE | 2013

Proinflammatory cytokines are elevated in serum of patients with multiple system atrophy.

Eli Kaufman; Sara Hall; Yulia Surova; Håkan Widner; Oskar Hansson; Daniel Lindqvist

Background Despite several lines of evidence from preclinical and post-mortem studies suggesting that inflammation is involved in Multiple System Atrophy (MSA), no previous studies have measured peripheral indices of inflammation in MSA patients. Methods We measured C-reactive protein, interleukin (IL)-6, soluble IL-2 receptor and tumor necrosis factor (TNF)-α in blood samples from MSA patients (n = 14) and healthy controls (n = 40). Results IL-6 and TNF-α were significantly elevated in MSA patients compared to healthy controls. After controlling for the potentially confounding effects of age, gender, and somatic co-morbidities, a diagnosis of MSA was still significantly associated with high levels of TNF-α. Higher TNF-α levels were associated with less severe motor symptoms and earlier disease stage. Conclusions Our findings are in line with the hypothesis that inflammation might be involved at an early stage of MSA pathophysiology.

Collaboration


Dive into the Sara Hall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaj Blennow

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge