Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Helen Knox is active.

Publication


Featured researches published by Sara Helen Knox.


Global Change Biology | 2015

Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta

Sara Helen Knox; Cove Sturtevant; Jaclyn Hatala Matthes; Laurie Koteen; Joseph Verfaillie; Dennis D. Baldocchi

Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land-use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land-use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m(-2) yr(-1) as CO2 and 11.4 g C m(-2) yr(-1) as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m(-2) yr(-1). However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m(-2) yr(-1). In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land-use types can help reduce or reverse soil subsidence and reduce GHG emissions.


Journal of Geophysical Research | 2016

Identifying scale‐emergent, nonlinear, asynchronous processes of wetland methane exchange

Cove Sturtevant; Benjamin L. Ruddell; Sara Helen Knox; Joseph Verfaillie; Jaclyn Hatala Matthes; Patricia Y. Oikawa; Dennis D. Baldocchi

Methane (CH4) exchange in wetlands is complex, involving nonlinear asynchronous processes across diverse time scales. These processes and time scales are poorly characterized at the whole-ecosystem level, yet are crucial for accurate representation of CH4 exchange in process models. We used a combination of wavelet analysis and information theory to analyze interactions between whole-ecosystem CH4 flux and biophysical drivers in two restored wetlands of Northern California from hourly to seasonal time scales, explicitly questioning assumptions of linear, synchronous, single-scale analysis. Although seasonal variability in CH4 exchange was dominantly and synchronously controlled by soil temperature, water table fluctuations, and plant activity were important synchronous and asynchronous controls at shorter time scales that propagated to the seasonal scale. Intermittent, subsurface water table decline promoted short-term pulses of methane emission but ultimately decreased seasonal CH4 emission through subsequent inhibition after rewetting. Methane efflux also shared information with evapotranspiration from hourly to multiday scales and the strength and timing of hourly and diel interactions suggested the strong importance of internal gas transport in regulating short-term emission. Traditional linear correlation analysis was generally capable of capturing the major diel and seasonal relationships, but mesoscale, asynchronous interactions and nonlinear, cross-scale effects were unresolved yet important for a deeper understanding of methane flux dynamics. We encourage wider use of these methods to aid interpretation and modeling of long-term continuous measurements of trace gas and energy exchange.


Journal of Geophysical Research | 2014

Parsing the variability in CH4 flux at a spatially heterogeneous wetland: Integrating multiple eddy covariance towers with high‐resolution flux footprint analysis

Jaclyn Hatala Matthes; Cove Sturtevant; Joseph Verfaillie; Sara Helen Knox; Dennis D. Baldocchi

Restored wetlands are a complex mosaic of open water and new and old emergent vegetation patches, where multiple environmental and biological drivers contribute to the measured heterogeneity in methane (CH4) flux. In this analysis, we replicated the measurements of CH4 flux using the eddy covariance technique at three tower locations within the same wetland site to parse the spatiotemporal variability in CH4 flux contributed by large-scale seasonal variations in climate and phenology and short-term variations in flux footprint movement over a mosaic of vegetation and open water. Using a hierarchical statistical model accounting for site-level environmental effects, tower-level footprint and biological effects, and temporal autocorrelation, we partitioned the key drivers of the daily CH4 flux variability among the three replicated towers. The daily mean air temperature and mean friction velocity, a measure of momentum transfer, explained a significant variability in CH4 flux across the three towers, and the abundance and spatial aggregation of vegetation in the flux footprint along with the daily gross primary productivity explained much of the tower-level variability. This statistical model captured 67% of the total variance in the daily integrated growing season CH4 fluxes at this site, which bridged an order of magnitude from 80 to 480 mg C m−2 d−1 during the measurement period from 10 May 2012 to 24 October 2012.


Journal of Geophysical Research | 2016

Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy

Sara Helen Knox; Jaclyn Hatala Matthes; Cove Sturtevant; Patricia Y. Oikawa; Joseph Verfaillie; Dennis D. Baldocchi

We present 6.5 years of eddy covariance measurements of fluxes of methane (FCH4) and carbon dioxide (FCO2) from a flooded rice paddy in Northern California, USA. A pronounced warming trend throughout the study associated with drought and record high temperatures strongly influenced carbon (C) budgets and provided insights into biophysical controls of FCO2 and FCH4. Wavelet analysis indicated that photosynthesis (gross ecosystem production, GEP) induced the diel pattern in FCH4, but soil temperature (Ts) modulated its amplitude. Forward stepwise linear models and neural networking modeling were used to assess the variables regulating seasonal FCH4. As expected due to their competence in modeling nonlinear relationships, neural network models explained considerably more of the variance in daily average FCH4 than linear models. During the growing season, GEP and water levels typically explained most of the variance in daily average FCH4. However, Ts explained much of the interannual variability in annual and growing season CH4 sums. Higher Ts also increased the annual and growing season ratio of FCH4 to GEP. The observation that the FCH4 to GEP ratio scales predictably with Ts may help improve global estimates of FCH4 from rice agriculture. Additionally, Ts strongly influenced ecosystem respiration, resulting in large interannual variability in the net C budget at the paddy, emphasizing the need for long-term measurements particularly under changing climatic conditions.


Geophysical Research Letters | 2016

The contribution of an overlooked transport process to a wetland's methane emissions

Cristina Poindexter; Dennis D. Baldocchi; Jaclyn Hatala Matthes; Sara Helen Knox; Evan A. Variano

Wetland methane transport processes affect what portion of methane produced in wetlands reaches the atmosphere. We model what has been perceived to be the least important of these transport processes: hydrodynamic transport of methane through wetland surface water and show that its contribution to total methane emissions from a temperate freshwater marsh is surprisingly large. In our 1 year study, hydrodynamic transport comprised more than half of nighttime methane fluxes and was driven primarily by water column thermal convection occurring overnight as the water surface cooled. Overall, hydrodynamic transport was responsible for 32% of annual methane emissions. Many methane models have overlooked this process, but our results show that wetland methane fluxes cannot always be accurately described using only other transport processes (plant-mediated transport and ebullition). Modifying models to include hydrodynamic transport and the mechanisms that drive it, particularly convection, could help improve predictions of future wetland methane emissions.


Journal of Geophysical Research | 2016

Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

Frank Anderson; Brian A. Bergamaschi; Cove Sturtevant; Sara Helen Knox; Lauren Hastings; Lisamarie Windham-Myers; Matteo Detto; Erin L. Hestir; Judith Z. Drexler; Robin L. Miller; Jaclyn Hatala Matthes; Joseph Verfaillie; Dennis D. Baldocchi; Richard L. Snyder; Roger Fujii

Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002–2003 and 2010–2011. During 2010–2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002–2003 compared to 2010–2011. In 2002, the daily net ecosystem exchange reached as low as −10.6 g C m−2 d−1, which was greater than 3 times the magnitude observed in 2010 (−2.9 g C m−2 d−1). CH4 fluxes during 2010–2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m−2 d−1 in the winter to 375.9 mg C m−2 d−1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010–2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010–2011, there was a net positive GWP (675.3 g C m−2 yr−1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.


Journal of Geophysical Research | 2017

Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands

Patricia Y. Oikawa; G. D. Jenerette; Sara Helen Knox; Cove Sturtevant; Joseph Verfaillie; Iryna Dronova; Cristina Poindexter; Elke Eichelmann; Dennis D. Baldocchi

Wetlands and flooded peatlands can sequester large amounts of carbon (C) and have high greenhouse gas mitigation potential. There is growing interest in financing wetland restoration using C markets; however, this requires careful accounting of both CO2 and CH4 exchange at the ecosystem scale. Here we present a new model, the PEPRMT model (Peatland Ecosystem Photosynthesis Respiration and Methane Transport), which consists of a hierarchy of biogeochemical models designed to estimate CO2 and CH4 exchange in restored managed wetlands. Empirical models using temperature and/or photosynthesis to predict respiration and CH4 production were contrasted with a more process-based model that simulated substrate-limited respiration and CH4 production using multiple carbon pools. Models were parameterized by using a model-data fusion approach with multiple years of eddy covariance data collected in a recently restored wetland and a mature restored wetland. A third recently restored wetland site was used for model validation. During model validation, the process-based model explained 70% of the variance in net ecosystem exchange of CO2 (NEE) and 50% of the variance in CH4 exchange. Not accounting for high respiration following restoration led to empirical models overestimating annual NEE by 33–51%. By employing a model-data fusion approach we provide rigorous estimates of uncertainty in model predictions, accounting for uncertainty in data, model parameters, and model structure. The PEPRMT model is a valuable tool for understanding carbon cycling in restored wetlands and for application in carbon market-funded wetland restoration, thereby advancing opportunity to counteract the vast degradation of wetlands and flooded peatlands.


Hydrological Processes | 2015

Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi‐site study in the tropical Cordillera Blanca, Peru

Michel Baraer; Jeffrey M. McKenzie; Bryan G. Mark; Ryan P. Gordon; Jeffrey Bury; Thomas Condom; Jesus Gomez; Sara Helen Knox; Sarah K. Fortner


Agricultural and Forest Meteorology | 2016

The impact of expanding flooded land area on the annual evaporation of rice

Dennis D. Baldocchi; Sara Helen Knox; Iryna Dronova; Joe Verfaillie; Patty Oikawa; Cove Sturtevant; Jaclyn Hatala Matthes; Matteo Detto


Hydrological Processes | 2012

Snow surface energy exchanges and snowmelt in a shrub-covered bog in eastern Ontario, Canada

Sara Helen Knox; Sean K. Carey; Elyn R. Humphreys

Collaboration


Dive into the Sara Helen Knox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cove Sturtevant

National Ecological Observatory Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iryna Dronova

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Anderson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Lisamarie Windham-Myers

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge